Christian Freund , Peter Gehrig , Antonio Baici , Tad A Holak , Andreas Plückthun
{"title":"Parallel pathways in the folding of a short-term denatured scFv fragment of an antibody","authors":"Christian Freund , Peter Gehrig , Antonio Baici , Tad A Holak , Andreas Plückthun","doi":"10.1016/S1359-0278(98)00007-8","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Background</strong>: Antibodies are prototypes of multimeric proteins and consist of structurally similar domains. The two variable domains of an antibody (V<sub>H</sub> and V<sub>L</sub>) interact through a large hydrophobic interface and can be expressed as covalently linked single-chain Fv (scFv) fragments. The <em>in vitro</em> folding of scFv fragments after long-term denaturation in guanidinium chloride is known to be slow. In order to delineate the nature of the rate-limiting step, the folding of the scFv fragment of an antibody after short-term denaturation has been investigated.</p><p><strong>Results</strong>: Secondary structure formation, measured by H/D-exchange protection, of a mutant scFv fragment of an antibody after short incubation in 6 M guanidinium chloride was shown to be multiphasic. NMR analysis shows that an intermediate with significant proton protection is observed within the dead time of the manual mixing experiments. Subsequently, the folding reaction proceeds via a biphasic reaction and mass spectrometry analyses of the exchange experiments confirm the existence of two parallel pathways. In the presence of cyclophilin, however, the faster of the two phases vanishes (when followed by intrinsic tryptophan fluorescence), while the slower phase is not significantly enhanced by equimolar cyclophilin.</p><p><strong>Conclusions</strong>: The formation of an early intermediate, which shows amide-proton exchange protection, is independent of proline isomerization. Subsequently, a proline <em>cis–trans</em> isomerization reaction in the rapidly formed intermediate, producing ‘non-native’ isomers, competes with the fast formation of native species. Interface formation in a folding intermediate of the scFv fragment is proposed to prevent the back-isomerization of these prolines from being efficiently catalyzed by cyclophilin.</p></div>","PeriodicalId":79488,"journal":{"name":"Folding & design","volume":"3 1","pages":"Pages 39-49"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1359-0278(98)00007-8","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folding & design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359027898000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Background: Antibodies are prototypes of multimeric proteins and consist of structurally similar domains. The two variable domains of an antibody (VH and VL) interact through a large hydrophobic interface and can be expressed as covalently linked single-chain Fv (scFv) fragments. The in vitro folding of scFv fragments after long-term denaturation in guanidinium chloride is known to be slow. In order to delineate the nature of the rate-limiting step, the folding of the scFv fragment of an antibody after short-term denaturation has been investigated.
Results: Secondary structure formation, measured by H/D-exchange protection, of a mutant scFv fragment of an antibody after short incubation in 6 M guanidinium chloride was shown to be multiphasic. NMR analysis shows that an intermediate with significant proton protection is observed within the dead time of the manual mixing experiments. Subsequently, the folding reaction proceeds via a biphasic reaction and mass spectrometry analyses of the exchange experiments confirm the existence of two parallel pathways. In the presence of cyclophilin, however, the faster of the two phases vanishes (when followed by intrinsic tryptophan fluorescence), while the slower phase is not significantly enhanced by equimolar cyclophilin.
Conclusions: The formation of an early intermediate, which shows amide-proton exchange protection, is independent of proline isomerization. Subsequently, a proline cis–trans isomerization reaction in the rapidly formed intermediate, producing ‘non-native’ isomers, competes with the fast formation of native species. Interface formation in a folding intermediate of the scFv fragment is proposed to prevent the back-isomerization of these prolines from being efficiently catalyzed by cyclophilin.