{"title":"Time Course Study for Airway Inflammation and Responsiveness by Repeated Provocation of Aeroantigen in Guinea Pigs","authors":"Hiroshi Takeda, Akifumi Kogame, Hiroyuki Tanaka, Hiroichi Nagai","doi":"10.1016/S0090-6980(97)00158-5","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the mechanisms of airway hyperresponsiveness (AHR), we examined the time course for asthmatic responses (including immediate asthmatic response (IAR), late asthmatic response (LAR), and AHR), airway inflammation (including edema in the airway, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), and mediator release including histamine and thromboxane A<sub>2</sub> (TXA<sub>2</sub>) in BALF after the repeated provocation of aeroantigen in sensitized guinea pigs. Furthermore, we examined the effect of S-1452, a TXA<sub>2</sub> receptor antagonist, on the antigen-induced airway obstruction and AHR in guinea pigs.</p><p>We found that IAR occurred 1 min after every antigen inhalations. LAR was observed every 4 h after the inhalation of antigen without 1st or 2nd challenge. AHR was initially observed 4 h after the 5th inhalation of antigen, and then AHR was observed at every time measured even after the 6th provocation. The water content of the airway increased after the 2nd antigen inhalation. A number of leukocytes, especially eosinophils in BALF, was observed 30 min after the 2nd antigen inhalation. Desquamation of epithelia was observed 30 min after the 5th antigen inhalation. TXB<sub>2</sub> and histamine in BALF were detected after the first antigen inhalation. These results suggest that LAR is caused by repeated airway inflammation such as eosinophilia and mediator release including TXA<sub>2</sub>. AHR may appear with the damages of lung tissue such as desquamation of epithelia. Oral administration of S-1452 (1 and 10 mg/kg) significantly inhibited LAR and AHR, assessed after the 6th antigen challenge.</p><p>The present findings suggest that repeated antigen challenge causes airway inflammation and leads to the onset of LAR and AHR when became chronic. Furthermore, persistent generated TXA<sub>2</sub> plays an important role in the pathogenesis of antigen-induced late-phase obstruction and AHR.</p></div>","PeriodicalId":20653,"journal":{"name":"Prostaglandins","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0090-6980(97)00158-5","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0090698097001585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
To investigate the mechanisms of airway hyperresponsiveness (AHR), we examined the time course for asthmatic responses (including immediate asthmatic response (IAR), late asthmatic response (LAR), and AHR), airway inflammation (including edema in the airway, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), and mediator release including histamine and thromboxane A2 (TXA2) in BALF after the repeated provocation of aeroantigen in sensitized guinea pigs. Furthermore, we examined the effect of S-1452, a TXA2 receptor antagonist, on the antigen-induced airway obstruction and AHR in guinea pigs.
We found that IAR occurred 1 min after every antigen inhalations. LAR was observed every 4 h after the inhalation of antigen without 1st or 2nd challenge. AHR was initially observed 4 h after the 5th inhalation of antigen, and then AHR was observed at every time measured even after the 6th provocation. The water content of the airway increased after the 2nd antigen inhalation. A number of leukocytes, especially eosinophils in BALF, was observed 30 min after the 2nd antigen inhalation. Desquamation of epithelia was observed 30 min after the 5th antigen inhalation. TXB2 and histamine in BALF were detected after the first antigen inhalation. These results suggest that LAR is caused by repeated airway inflammation such as eosinophilia and mediator release including TXA2. AHR may appear with the damages of lung tissue such as desquamation of epithelia. Oral administration of S-1452 (1 and 10 mg/kg) significantly inhibited LAR and AHR, assessed after the 6th antigen challenge.
The present findings suggest that repeated antigen challenge causes airway inflammation and leads to the onset of LAR and AHR when became chronic. Furthermore, persistent generated TXA2 plays an important role in the pathogenesis of antigen-induced late-phase obstruction and AHR.