Glucose concentration and retinal function.

G Niemeyer
{"title":"Glucose concentration and retinal function.","authors":"G Niemeyer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The rod and cone systems of the mammalian retina differ in their structure and functional properties as well as in their metabolic characteristics. This article summarizes basic observations on retinal glucose metabolism reflected in retinal electrophysiology. Metabolic factors might be related to the complex pathogenesis of diabetic retinopathy. Effects of changing glucose concentration and, independently, of insulin on retinal responses obtained in an isolated mammalian eye preparation in vitro and also in vivo are presented. Electron microscopy (EM)-histochemical data reveal a distinctive distribution of glycogen in glia and in various subclasses of neurons in the cat retina. Low glucose, corresponding to hypoglycemia in vivo, affected the light-evoked electrical responses from the rod system, but not from the cone system in vitro. This could be confirmed in the anesthetized cat under glucose clamp conditions. Insulin had no influence on physiological retinal function, except under conditions of low glucose, where it enhanced the reduction in b-wave amplitude. This effect is interpreted as a sign of increased glucose utilization by the retinal Müller (glial) cells.</p>","PeriodicalId":79395,"journal":{"name":"Clinical neuroscience (New York, N.Y.)","volume":"4 6","pages":"327-35"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical neuroscience (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rod and cone systems of the mammalian retina differ in their structure and functional properties as well as in their metabolic characteristics. This article summarizes basic observations on retinal glucose metabolism reflected in retinal electrophysiology. Metabolic factors might be related to the complex pathogenesis of diabetic retinopathy. Effects of changing glucose concentration and, independently, of insulin on retinal responses obtained in an isolated mammalian eye preparation in vitro and also in vivo are presented. Electron microscopy (EM)-histochemical data reveal a distinctive distribution of glycogen in glia and in various subclasses of neurons in the cat retina. Low glucose, corresponding to hypoglycemia in vivo, affected the light-evoked electrical responses from the rod system, but not from the cone system in vitro. This could be confirmed in the anesthetized cat under glucose clamp conditions. Insulin had no influence on physiological retinal function, except under conditions of low glucose, where it enhanced the reduction in b-wave amplitude. This effect is interpreted as a sign of increased glucose utilization by the retinal Müller (glial) cells.

葡萄糖浓度和视网膜功能。
哺乳动物视网膜的视杆和视锥系统在其结构和功能特性以及代谢特征上有所不同。本文综述了视网膜电生理反映的视网膜糖代谢的基本观察结果。代谢因素可能与糖尿病视网膜病变复杂的发病机制有关。改变葡萄糖浓度和独立的胰岛素对视网膜反应的影响,在体外和体内分离的哺乳动物眼睛制备中获得。电镜(EM)组织化学数据显示糖原在猫视网膜的胶质细胞和不同亚类神经元中的独特分布。体内低血糖会影响杆状体系统的光诱发电反应,而体外的锥状体系统则不会。这可以在葡萄糖钳夹条件下的麻醉猫中得到证实。胰岛素对视网膜生理功能没有影响,除非在低血糖的情况下,胰岛素会增强b波振幅的减少。这种效应被解释为视网膜神经胶质细胞对葡萄糖利用增加的迹象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信