Lithium prevents ouabain-induced behavioral changes. Toward an animal model for manic depression.

R Li, R S el-Mallakh, L Harrison, D G Changaris, R S Levy
{"title":"Lithium prevents ouabain-induced behavioral changes. Toward an animal model for manic depression.","authors":"R Li,&nbsp;R S el-Mallakh,&nbsp;L Harrison,&nbsp;D G Changaris,&nbsp;R S Levy","doi":"10.1007/BF02815161","DOIUrl":null,"url":null,"abstract":"<p><p>Both mania and bipolar depression have been associated with decrements in the activity of the sodium and potassium-activated adenosine triphosphatase (Na,K-ATPase) membrane pump. Although the role of this observation in the pathophysiology of bipolar illness is unclear, it has been proposed that this defect could be central to the pathogenesis of the illness. In an effort to test this hypothesis, the authors examined the efficacy of lithium pretreatment in attenuating behavioral changes secondary to acute administration of a single intracerebroventricular (i.c.v.) dose of the Na,K-ATPase-inhibiting compound, ouabain, in the Sprague-Dawley rat. Ouabain (10(-3)M) significantly decreased motor activity in automated activity monitors. Lithium pretreatment for 7 d totally prevented this effect. These preliminary data suggest that i.c.v. ouabain administration in the rat may prove to be a viable animal model for bipolar illness.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":"31 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815161","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Both mania and bipolar depression have been associated with decrements in the activity of the sodium and potassium-activated adenosine triphosphatase (Na,K-ATPase) membrane pump. Although the role of this observation in the pathophysiology of bipolar illness is unclear, it has been proposed that this defect could be central to the pathogenesis of the illness. In an effort to test this hypothesis, the authors examined the efficacy of lithium pretreatment in attenuating behavioral changes secondary to acute administration of a single intracerebroventricular (i.c.v.) dose of the Na,K-ATPase-inhibiting compound, ouabain, in the Sprague-Dawley rat. Ouabain (10(-3)M) significantly decreased motor activity in automated activity monitors. Lithium pretreatment for 7 d totally prevented this effect. These preliminary data suggest that i.c.v. ouabain administration in the rat may prove to be a viable animal model for bipolar illness.

锂可以防止大麻引起的行为改变。走向躁狂抑郁症的动物模型。
躁狂症和双相抑郁症都与钠和钾活化的腺苷三磷酸酶(Na, k - atp酶)膜泵活性降低有关。虽然这种观察在双相情感障碍的病理生理学中的作用尚不清楚,但已经提出这种缺陷可能是该疾病发病机制的核心。为了验证这一假设,作者在Sprague-Dawley大鼠中检测了锂预处理在减轻急性给药单次脑室内(i.c.v)剂量的Na, k - atp酶抑制化合物瓦巴因后继发的行为改变的功效。沃巴因(10(-3)M)在自动活动监测器中显著降低了运动活动。锂预处理7 d完全阻止了这种效应。这些初步的数据表明,在大鼠中施用icv沃巴因可能被证明是一种可行的双相情感障碍动物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信