Understanding water: molecular dynamics simulations of myoglobin.

Basic life sciences Pub Date : 1996-01-01
W Gu, A E Garcia, B P Schoenborn
{"title":"Understanding water: molecular dynamics simulations of myoglobin.","authors":"W Gu,&nbsp;A E Garcia,&nbsp;B P Schoenborn","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulation. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.</p>","PeriodicalId":8697,"journal":{"name":"Basic life sciences","volume":"64 ","pages":"289-98"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic life sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulation. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

理解水:肌红蛋白的分子动力学模拟。
在CO肌红蛋白上进行分子动力学模拟,以评估中子衍射分析中确定的结合水分子的稳定性。由中子分析得到的肌红蛋白结构提供了模拟中使用的起始坐标集。模拟表明,只有少数水分子与蛋白质原子紧密结合,而大多数溶剂分子是不稳定的,会破坏和重组氢键。通过对肌红蛋白在溶液和单晶状态下的比较,突出了溶液中填料对溶剂结构的影响,表明水溶剂在蛋白质动力学和结构稳定性中起着不可或缺的作用。所描述的观察解释了在核磁共振、中子和x射线衍射研究中观察到的蛋白质水合作用实验结果的一些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信