J L Bennetzen, P SanMiguel, C N Liu, M Chen, A Tikhonov, A Costa de Oliveira, Y K Jin, Z Avramova, S S Woo, H Zhang, R A Wing
{"title":"The Hybaid Lecture. Microcollinearity and segmental duplication in the evolution of grass nuclear genomes.","authors":"J L Bennetzen, P SanMiguel, C N Liu, M Chen, A Tikhonov, A Costa de Oliveira, Y K Jin, Z Avramova, S S Woo, H Zhang, R A Wing","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have shown that grass genomes have very similar gene compositions and regions of conserved gene order, as exemplified by collinear genetic maps of DNA markers. We have begun the detailed study of sequence organization in large (100-500 kb) segments of the nuclear genomes of maize, sorghum and rice. Our results indicate collinearity of genes in the regions homoeologous to the maize adh1 and sh2-a1 genes. Comparable genes were found to be physically closer to each other in grasses with small genomes (rice and sorghum) than they are in maize. In several instances, we have found evidence of tandem and 'distantly tandem' duplications of segments containing maize and sorghum genes. These duplications complicate characterizations of microcollinearity and could also interfere with some map-based approaches to gene isolation.</p>","PeriodicalId":22134,"journal":{"name":"Symposia of the Society for Experimental Biology","volume":"50 ","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposia of the Society for Experimental Biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have shown that grass genomes have very similar gene compositions and regions of conserved gene order, as exemplified by collinear genetic maps of DNA markers. We have begun the detailed study of sequence organization in large (100-500 kb) segments of the nuclear genomes of maize, sorghum and rice. Our results indicate collinearity of genes in the regions homoeologous to the maize adh1 and sh2-a1 genes. Comparable genes were found to be physically closer to each other in grasses with small genomes (rice and sorghum) than they are in maize. In several instances, we have found evidence of tandem and 'distantly tandem' duplications of segments containing maize and sorghum genes. These duplications complicate characterizations of microcollinearity and could also interfere with some map-based approaches to gene isolation.