Effect of aromatic amino acid substitutions in the 3-position of cyclic beta-casomorphin analogues on mu-opioid agonist/delta-opioid antagonist properties.
R Schmidt, B C Wilkes, N N Chung, C Lemieux, P W Schiller
{"title":"Effect of aromatic amino acid substitutions in the 3-position of cyclic beta-casomorphin analogues on mu-opioid agonist/delta-opioid antagonist properties.","authors":"R Schmidt, B C Wilkes, N N Chung, C Lemieux, P W Schiller","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The beta-casomorphin-5 analog H-Tyr-c[-D-Orn-2-Nal-D-Pro-Gly-] (2-Nal = 2-naphthylalanine) was the first reported cyclic opioid peptide with mixed mu agonist/delta antagonist properties [R. Schmidt et al. (1994) J. Med. Chem. 37, 1136-1144]. The 2-Nal3 residue in this peptide was replaced with benzothienylalanine (Bta) (3), His(Bzl) (4), Tyr(Bzl) (5), 4'-benzoylphenylalanine (Bpa) (6), 4'-benzylphenylalanine (Bzp) (7), thyronine (Thy) (8), thyroxine (Thx) (9), 4'-biphenylalanine (Bip) (10), 4'-biphenylglycine (Bpg) (12) and 3,3-diphenylalanine (Dip) (14), and the in vitro opioid activity profiles of the resulting compounds were determined in mu and delta receptor-representative binding assays and bioassays. Analogues 3, 12 and 14 were full agonists in the mu receptor-representative guinea-pig ileum (GPI) assay and also were agonists in the delta receptor-representative mouse vas deferens (MVD) assay. The agonist effects of the latter compounds in the MVD assay were antagonized by the highly selective delta antagonist H-Tyr-Tic-Phe-Phe-OH (TIPP), indicating that they were triggered by delta receptor activation. The Bzp3- and Bip3- containing peptides 7 and 10 turned out to be mu antagonists against the mu selective agonist H-Tyr-D-Ala-Phe-Phe-NH2 in the GPI assay. The other analogues were weak partial mu agonists which displayed remarkably decreased mu receptor affinity as compared to parent peptide 1. Compounds 4-10 were found to be delta antagonists in the MVD assay. Analogues 4 and 9 exhibited delta antagonist potency similar to that of parent peptide 1, while compounds 5-8 and 10 showed 3-12-fold higher delta antagonist potency against DPDPE and deltorphin I and, in most cases, increased delta receptor affinity. These results indicate that the delta receptor tolerates bulky aromatic side chains in the 3-position of cyclic beta-casomorphin analogs with either delta agonist or delta antagonist properties. However, these compounds displayed drastically reduced mu receptor affinity in nearly all cases.</p>","PeriodicalId":14204,"journal":{"name":"International journal of peptide and protein research","volume":"48 5","pages":"411-9"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of peptide and protein research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The beta-casomorphin-5 analog H-Tyr-c[-D-Orn-2-Nal-D-Pro-Gly-] (2-Nal = 2-naphthylalanine) was the first reported cyclic opioid peptide with mixed mu agonist/delta antagonist properties [R. Schmidt et al. (1994) J. Med. Chem. 37, 1136-1144]. The 2-Nal3 residue in this peptide was replaced with benzothienylalanine (Bta) (3), His(Bzl) (4), Tyr(Bzl) (5), 4'-benzoylphenylalanine (Bpa) (6), 4'-benzylphenylalanine (Bzp) (7), thyronine (Thy) (8), thyroxine (Thx) (9), 4'-biphenylalanine (Bip) (10), 4'-biphenylglycine (Bpg) (12) and 3,3-diphenylalanine (Dip) (14), and the in vitro opioid activity profiles of the resulting compounds were determined in mu and delta receptor-representative binding assays and bioassays. Analogues 3, 12 and 14 were full agonists in the mu receptor-representative guinea-pig ileum (GPI) assay and also were agonists in the delta receptor-representative mouse vas deferens (MVD) assay. The agonist effects of the latter compounds in the MVD assay were antagonized by the highly selective delta antagonist H-Tyr-Tic-Phe-Phe-OH (TIPP), indicating that they were triggered by delta receptor activation. The Bzp3- and Bip3- containing peptides 7 and 10 turned out to be mu antagonists against the mu selective agonist H-Tyr-D-Ala-Phe-Phe-NH2 in the GPI assay. The other analogues were weak partial mu agonists which displayed remarkably decreased mu receptor affinity as compared to parent peptide 1. Compounds 4-10 were found to be delta antagonists in the MVD assay. Analogues 4 and 9 exhibited delta antagonist potency similar to that of parent peptide 1, while compounds 5-8 and 10 showed 3-12-fold higher delta antagonist potency against DPDPE and deltorphin I and, in most cases, increased delta receptor affinity. These results indicate that the delta receptor tolerates bulky aromatic side chains in the 3-position of cyclic beta-casomorphin analogs with either delta agonist or delta antagonist properties. However, these compounds displayed drastically reduced mu receptor affinity in nearly all cases.