In vivo autoradiographic and dissection evaluation of isomers of 125I-labeled 1-azabicyclo[2.2.2] oct-3-yl-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IQNP).
M R Rayeq, S F Boulay, V K Sood, D W McPherson, F F Knapp, B R Zeeberg
{"title":"In vivo autoradiographic and dissection evaluation of isomers of 125I-labeled 1-azabicyclo[2.2.2] oct-3-yl-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (IQNP).","authors":"M R Rayeq, S F Boulay, V K Sood, D W McPherson, F F Knapp, B R Zeeberg","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Radiolabeled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-[-,-]-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Preliminary rat brain regional dissection studies have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. An important observation is that Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher percent dose/g compared to (R,S)-[125I]IQNB. These observations are confirmed here by in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP. Thus, in vivo competition studies against Z-(-,-)-[125I]IQNP would provide a potentially more sensitive and accurate probe for demonstrating the in vivo m2 selectivity of the nonradioactive ligands. In addition, Z-(-,-)-[123I]IQNP would potentially be useful for SPECT imaging of muscarinic receptor loss in neurodegenerative diseases.</p>","PeriodicalId":79456,"journal":{"name":"Receptors & signal transduction","volume":"6 1","pages":"13-34"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & signal transduction","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
(R,S)-[125I]IQNB has been used extensively in in vivo studies in rats and has been of utility in demonstrating the in vivo subtype selectivity of nonradioactive ligands in competition studies. Radiolabeled Z- and E-(-,-)-1-azabicyclo[2.2.2]oct-3-yl alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z- and E-[-,-]-[125I]IQNP) are analogs of (R,S)-[125I]IQNB. Preliminary rat brain regional dissection studies have indicated that Z- and E-(-,-)-[125I]IQNP, in general, are distributed similarly to (R,S)-[125I]IQNB. An important observation is that Z-(-,-)-[125I]IQNP binds to the muscarinic receptors in those brain regions enriched in the m2 subtype with approximately a two- to fivefold higher percent dose/g compared to (R,S)-[125I]IQNB. These observations are confirmed here by in vivo autoradiographic comparison of the time-courses of (R,S)-[125I]IQNB, Z-(-,-)-[125I]IQNP, and E-(-,-)-[125I]IQNP. Thus, in vivo competition studies against Z-(-,-)-[125I]IQNP would provide a potentially more sensitive and accurate probe for demonstrating the in vivo m2 selectivity of the nonradioactive ligands. In addition, Z-(-,-)-[123I]IQNP would potentially be useful for SPECT imaging of muscarinic receptor loss in neurodegenerative diseases.