An algorithmic approach to the differential diagnosis of dementia.

J E Graham, A B Mitnitski, A J Mogilner, D Gauvreau, K Rockwood
{"title":"An algorithmic approach to the differential diagnosis of dementia.","authors":"J E Graham,&nbsp;A B Mitnitski,&nbsp;A J Mogilner,&nbsp;D Gauvreau,&nbsp;K Rockwood","doi":"10.1159/000106898","DOIUrl":null,"url":null,"abstract":"<p><p>The careful definition of cases is fundamental to diagnosis and to any study of cognitive, behavioural and functional problems in dementia. This paper presents an algorithmic approach which mimics a crucial component of diagnostic decision-making; symptoms and signs do not occur independently, but are conditioned on each other. First, we examine whether the conditioned items can be assembled to yield a differential diagnosis of dementia which corresponds to clinical diagnoses, and second, we explore whether subjects whose algorithmic profiles do not fit the clinical diagnoses form new discernable patterns. Such a technique offers two advantages: it allows for the development of validation protocols which are crucial to epidemiological studies, and it allows for the analysis of new patterns of signs and symptoms for emerging criteria of dementia subtypes. This approach has the potential to refine and enhance criteria for the differential diagnosis of dementia and to have an impact on case identification and assessment, particularly in large epidemiologic studies.</p>","PeriodicalId":79336,"journal":{"name":"Dementia (Basel, Switzerland)","volume":"7 6","pages":"324-30"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000106898","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dementia (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000106898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The careful definition of cases is fundamental to diagnosis and to any study of cognitive, behavioural and functional problems in dementia. This paper presents an algorithmic approach which mimics a crucial component of diagnostic decision-making; symptoms and signs do not occur independently, but are conditioned on each other. First, we examine whether the conditioned items can be assembled to yield a differential diagnosis of dementia which corresponds to clinical diagnoses, and second, we explore whether subjects whose algorithmic profiles do not fit the clinical diagnoses form new discernable patterns. Such a technique offers two advantages: it allows for the development of validation protocols which are crucial to epidemiological studies, and it allows for the analysis of new patterns of signs and symptoms for emerging criteria of dementia subtypes. This approach has the potential to refine and enhance criteria for the differential diagnosis of dementia and to have an impact on case identification and assessment, particularly in large epidemiologic studies.

痴呆鉴别诊断的一种算法方法。
仔细定义病例是诊断和任何痴呆症认知、行为和功能问题研究的基础。本文提出了一种算法方法,它模拟了诊断决策的一个关键组成部分;症状和体征不是独立发生的,而是相互依存的。首先,我们检查条件项目是否可以组装以产生与临床诊断相对应的痴呆症的鉴别诊断,其次,我们探索其算法概况不符合临床诊断的受试者是否形成新的可识别模式。这种技术提供了两个优势:它允许制定对流行病学研究至关重要的验证方案,并允许分析新出现的痴呆症亚型标准的体征和症状模式。这种方法有可能完善和加强痴呆症的鉴别诊断标准,并对病例识别和评估产生影响,特别是在大型流行病学研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信