Prudent expert systems with credentials: managing the expertise of decision support systems

Glenn Edwards , Byeong Ho Kang , Philip Preston , Paul Compton
{"title":"Prudent expert systems with credentials: managing the expertise of decision support systems","authors":"Glenn Edwards ,&nbsp;Byeong Ho Kang ,&nbsp;Philip Preston ,&nbsp;Paul Compton","doi":"10.1016/0020-7101(95)01136-3","DOIUrl":null,"url":null,"abstract":"<div><p>‘Black box’ expert systems (ES) are mistrusted by clinicians. Errors generated by medical ES are also a significant cause for concern. We report new ES properties — prudence and credentials — that improve error management and underpin a new approach for improving the credibility of ES for clinical users. Prudent ES modify their output according to past experience. For a knowledge base built from 1610 cases, feature exception prudence (FEP) detected all interpretation errors (100% sensitivity for error detection). Although the false positive rate for FEP was high (47%), the 100%) sensitivity meant that the 53% of cases that did not produce flags could be exempted from human validation. As more cases are processed, fewer cases should need human validation. Feature recognition prudence (FRP), a property of ripple down rules (RDR), proposed the correct alternative conclusion in 14% of incorrectly interpreted cases. Human expert validation of the flagged cases enabled context-sensitive credentials (accuracy, incidence and specificity of a given conclusion) to accumulate. Credentials should enable the user to judge the credibility of the ES output. An error management strategy based on credentialled, prudent ES should reduce the impact of error in the clinical environment. The empowerment of clinicians to critically evaluate ES credibility may facilitate greater confidence in, and acceptance of, ES by clinicians.</p></div>","PeriodicalId":75935,"journal":{"name":"International journal of bio-medical computing","volume":"40 2","pages":"Pages 125-132"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-7101(95)01136-3","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of bio-medical computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020710195011363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

‘Black box’ expert systems (ES) are mistrusted by clinicians. Errors generated by medical ES are also a significant cause for concern. We report new ES properties — prudence and credentials — that improve error management and underpin a new approach for improving the credibility of ES for clinical users. Prudent ES modify their output according to past experience. For a knowledge base built from 1610 cases, feature exception prudence (FEP) detected all interpretation errors (100% sensitivity for error detection). Although the false positive rate for FEP was high (47%), the 100%) sensitivity meant that the 53% of cases that did not produce flags could be exempted from human validation. As more cases are processed, fewer cases should need human validation. Feature recognition prudence (FRP), a property of ripple down rules (RDR), proposed the correct alternative conclusion in 14% of incorrectly interpreted cases. Human expert validation of the flagged cases enabled context-sensitive credentials (accuracy, incidence and specificity of a given conclusion) to accumulate. Credentials should enable the user to judge the credibility of the ES output. An error management strategy based on credentialled, prudent ES should reduce the impact of error in the clinical environment. The empowerment of clinicians to critically evaluate ES credibility may facilitate greater confidence in, and acceptance of, ES by clinicians.

审慎的专家系统与证书:管理决策支持系统的专业知识
“黑匣子”专家系统(ES)不被临床医生信任。医疗ES产生的错误也是令人担忧的一个重要原因。我们报告了新的ES属性-谨慎和凭据-改进了错误管理,并为提高临床用户ES的可信度奠定了新方法。谨慎的ES会根据过去的经验调整自己的产出。对于由1610个案例构建的知识库,特征异常谨慎性(FEP)检测到所有解释错误(错误检测的灵敏度为100%)。虽然FEP的假阳性率很高(47%),但100%的敏感性意味着53%没有产生标记的病例可以免于人的验证。随着处理的案例越来越多,需要人工验证的案例就会越来越少。特征识别审慎性(FRP)是波纹规则(RDR)的一个特性,在14%的错误解释案例中提出了正确的替代结论。人类专家对标记病例的验证使上下文敏感的凭据(给定结论的准确性、发生率和特异性)得以积累。凭据应该使用户能够判断ES输出的可信度。基于认证的错误管理策略,谨慎的ES应该减少错误对临床环境的影响。授权临床医生批判性地评估ES的可信度可能会促进临床医生对ES的更大信心和接受度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信