{"title":"Effects of local stress, strain, and hydrogen content on hydrogen-related fracture behavior in low-carbon martensitic steel","authors":"Akinobu Shibata , Takashi Yonemura , Yuji Momotani , Myeong-heom Park , Shusaku Takagi , Yazid Madi , Jacques Besson , Nobuhiro Tsuji","doi":"10.1016/j.actamat.2021.116828","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigated the hydrogen-related fracture behavior of specimens with different stress concentration factors through microstructure observation, finite element (FE) simulation, and digital image correlation (DIC) analysis. The alloy studied was a simple model alloy (Fe-0.2C binary alloy) with fully martensite structure. When the hydrogen content was large (2.21 mass ppm (121 at ppm)), the crack initiation and propagation occurred along the prior austenite grain boundaries. Through the FE simulations, we found that the crack initiation sites corresponded to the region with high stress and high hydrogen content. Although the stress concentration factors were different, the stress level and the hydrogen content at the crack initiation sites were almost the same, indicating that the hydrogen-related intergranular fracture originated from stress-controlled decohesion at the prior austenite grain boundaries. For the specimen with small hydrogen content (0.41 mass ppm (22.5 at ppm)), the quasi-cleavage cracks formed at the surface of the notch root and propagated along the {011} planes. The FE simulations revealed that the plastic strains were maximum at the initiation sites of the quasi-cleavage cracks. Moreover, we confirmed that hydrogen enhanced the local plastic deformation by DIC analysis. As the local values of maximum principal stress, plastic strain, and hydrogen content at the initiation sites of the quasi-cleavage cracks were different depending on the stress concentration factor, the critical quantitative condition for the initiation of quasi-cleavage cracking was not simple compared to that of the case of intergranular cracking.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"210 ","pages":"Article 116828"},"PeriodicalIF":9.3000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.actamat.2021.116828","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645421002081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 29
Abstract
The present study investigated the hydrogen-related fracture behavior of specimens with different stress concentration factors through microstructure observation, finite element (FE) simulation, and digital image correlation (DIC) analysis. The alloy studied was a simple model alloy (Fe-0.2C binary alloy) with fully martensite structure. When the hydrogen content was large (2.21 mass ppm (121 at ppm)), the crack initiation and propagation occurred along the prior austenite grain boundaries. Through the FE simulations, we found that the crack initiation sites corresponded to the region with high stress and high hydrogen content. Although the stress concentration factors were different, the stress level and the hydrogen content at the crack initiation sites were almost the same, indicating that the hydrogen-related intergranular fracture originated from stress-controlled decohesion at the prior austenite grain boundaries. For the specimen with small hydrogen content (0.41 mass ppm (22.5 at ppm)), the quasi-cleavage cracks formed at the surface of the notch root and propagated along the {011} planes. The FE simulations revealed that the plastic strains were maximum at the initiation sites of the quasi-cleavage cracks. Moreover, we confirmed that hydrogen enhanced the local plastic deformation by DIC analysis. As the local values of maximum principal stress, plastic strain, and hydrogen content at the initiation sites of the quasi-cleavage cracks were different depending on the stress concentration factor, the critical quantitative condition for the initiation of quasi-cleavage cracking was not simple compared to that of the case of intergranular cracking.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.