{"title":"Glucose formation from methylglyoxal in hepatocytes from streptozotocin-induced diabetic mice: the effect of insulin.","authors":"M P Kalapos, P Riba, T Garzo, J Mandl","doi":"10.1007/BF01923997","DOIUrl":null,"url":null,"abstract":"<p><p>Acetol and methylglyoxal are intermediates of the intrahepatic metabolism of acetone leading to pyruvate formation. In hepatocytes prepared from fasted streptozotocin-induced diabetic mice, net glucose production could be measured from methylglyoxal but not from acetone or acetol. Insulin increased glucose formation from methylglyoxal in a concentration-dependent manner, whereas it was ineffective when pyruvate was used as substrate. Drug oxidation, as evidenced by p-aminophenol formation from aniline, was enhanced by methylglyoxal, and insulin proved to be stimulatory in this case as well. It is concluded that insulin might be involved in the regulation of glucose formation from methylglyoxal, but its mode of action is not yet clear.</p>","PeriodicalId":12087,"journal":{"name":"Experientia","volume":"52 8","pages":"827-30"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01923997","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01923997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Acetol and methylglyoxal are intermediates of the intrahepatic metabolism of acetone leading to pyruvate formation. In hepatocytes prepared from fasted streptozotocin-induced diabetic mice, net glucose production could be measured from methylglyoxal but not from acetone or acetol. Insulin increased glucose formation from methylglyoxal in a concentration-dependent manner, whereas it was ineffective when pyruvate was used as substrate. Drug oxidation, as evidenced by p-aminophenol formation from aniline, was enhanced by methylglyoxal, and insulin proved to be stimulatory in this case as well. It is concluded that insulin might be involved in the regulation of glucose formation from methylglyoxal, but its mode of action is not yet clear.