{"title":"The neurotrophic effects of ebiratide, an analog of ACTH4-9, on cultured septal cells and aged rats.","authors":"T Matsumoto, S Tsuda, S Nakamura","doi":"10.1007/BF01276861","DOIUrl":null,"url":null,"abstract":"<p><p>The neurotrophic effects of ebiratide, an ACTH4-9 analog, have been examined using both fetal rat septal cultures and aged rats. The 5-day treatment with ebiratide (10-100 pmol/ml) partially prevented neuronal degeneration that occurred in the cultures in which cells were sparsely plated. Ebiratide (10 pmol/ ml) increased choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities up to 1.5 and 1.2 times the respective control values in the sub-confluent cultures. AChE cytochemistry of the cultures has shown that ebiratide increased the stained area per cell. Ebiratide subcutaneously administered by constant infusion (10 nmol/body/hr) for 4 weeks elevated ChAT activities in the septum (35% over control), neocortex (79%) and hippocampus (89%) of aged rats. Thus, the present study indicates that ebiratide shares neurotrophic properties which may prove beneficial in the therapy for CNS degenerative disorders, especially Alzheimer's disease.</p>","PeriodicalId":77215,"journal":{"name":"Journal of neural transmission. General section","volume":"100 1","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01276861","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural transmission. General section","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01276861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The neurotrophic effects of ebiratide, an ACTH4-9 analog, have been examined using both fetal rat septal cultures and aged rats. The 5-day treatment with ebiratide (10-100 pmol/ml) partially prevented neuronal degeneration that occurred in the cultures in which cells were sparsely plated. Ebiratide (10 pmol/ ml) increased choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities up to 1.5 and 1.2 times the respective control values in the sub-confluent cultures. AChE cytochemistry of the cultures has shown that ebiratide increased the stained area per cell. Ebiratide subcutaneously administered by constant infusion (10 nmol/body/hr) for 4 weeks elevated ChAT activities in the septum (35% over control), neocortex (79%) and hippocampus (89%) of aged rats. Thus, the present study indicates that ebiratide shares neurotrophic properties which may prove beneficial in the therapy for CNS degenerative disorders, especially Alzheimer's disease.