Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces

Erwin Tafeit, Willibald Estelberger, Renate Horejsi, Reinhard Moeller, Karl Oettl, Karoline Vrecko, Gilbert Reibnegger
{"title":"Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces","authors":"Erwin Tafeit,&nbsp;Willibald Estelberger,&nbsp;Renate Horejsi,&nbsp;Reinhard Moeller,&nbsp;Karl Oettl,&nbsp;Karoline Vrecko,&nbsp;Gilbert Reibnegger","doi":"10.1016/0263-7855(95)00087-9","DOIUrl":null,"url":null,"abstract":"<div><p><em>Ab initio</em> quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using <em>ab initio</em> data on conformational properties of the cofactor (<em>6R,1′R,2′S</em>)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.</p></div>","PeriodicalId":73837,"journal":{"name":"Journal of molecular graphics","volume":"14 1","pages":"Pages 12-18"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0263-7855(95)00087-9","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0263785595000879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Ab initio quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using ab initio data on conformational properties of the cofactor (6R,1′R,2′S)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.

神经网络作为从头算分子势能面紧凑表示的工具
从头算分子性质的量子化学计算,例如,扭转势能,即使对于中等大小的分子,如果使用具有合理质量的基集,也需要大量的计算工作。利用从头计算的辅助因子(6R, 1'R, 2'S)-5,6,7,8-四氢生物terin构象性质的数据,我们证明了误差反向传播网络可以有效地近似复杂的函数关系,如柔性分子的扭转势能面。我们的试点模拟表明,经过适当训练的神经网络可能为量子化学获得的信息提供极其紧凑的存储介质。此外,当涉及到使用存储信息时,它们是非常舒适的工具。证明了一种可能的应用,即计算松弛扭转能面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信