Carotid body adaptation to hypoxia: cellular and molecular mechanisms in vitro.

C A Nurse
{"title":"Carotid body adaptation to hypoxia: cellular and molecular mechanisms in vitro.","authors":"C A Nurse","doi":"10.1159/000109454","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic hypoxia in vivo promotes long-term changes in the carotid body (CB) response to low PO2. By exposing cultured rat CB chemoreceptors (glomus cells) to 6% O2 for 1-3 weeks, we are investigating the cellular and molecular mechanisms of hypoxic adaptation. Recent studies have uncovered a series of plastic changes in glomus cells including hypertrophy, differential regulation of Na+, Ca2+, and K+ currents, and upregulation of the 'plasticity protein', GAP-43. We have also identified cyclic AMP as a possible intracellular mediator of at least some of these effects of chronic hypoxia. Associated with the changes in ionic currents, glomus cells become electrically more excitable. However, a complete understanding of the physiological response of chronically hypoxic glomus cells to chemostimuli will require more detailed knowledge of the specific alterations in the sensing and signaling pathways, including modifications in neurotransmitter (e.g. catecholamine) functions.</p>","PeriodicalId":9265,"journal":{"name":"Biological signals","volume":"4 5","pages":"286-91"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000109454","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000109454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Chronic hypoxia in vivo promotes long-term changes in the carotid body (CB) response to low PO2. By exposing cultured rat CB chemoreceptors (glomus cells) to 6% O2 for 1-3 weeks, we are investigating the cellular and molecular mechanisms of hypoxic adaptation. Recent studies have uncovered a series of plastic changes in glomus cells including hypertrophy, differential regulation of Na+, Ca2+, and K+ currents, and upregulation of the 'plasticity protein', GAP-43. We have also identified cyclic AMP as a possible intracellular mediator of at least some of these effects of chronic hypoxia. Associated with the changes in ionic currents, glomus cells become electrically more excitable. However, a complete understanding of the physiological response of chronically hypoxic glomus cells to chemostimuli will require more detailed knowledge of the specific alterations in the sensing and signaling pathways, including modifications in neurotransmitter (e.g. catecholamine) functions.

颈动脉体对缺氧的适应:体外细胞和分子机制。
体内慢性缺氧促进颈动脉体(CB)对低PO2反应的长期变化。通过将培养的大鼠CB化学感受器(球囊细胞)暴露于6%的O2中1-3周,我们正在研究缺氧适应的细胞和分子机制。最近的研究发现了球囊细胞的一系列可塑性变化,包括肥大,Na+、Ca2+和K+电流的差异调节,以及“可塑性蛋白”GAP-43的上调。我们还发现环AMP可能是慢性缺氧的细胞内介质。随着离子电流的变化,血管球细胞在电上变得更容易兴奋。然而,要全面了解慢性缺氧球囊细胞对化学刺激的生理反应,需要更详细地了解感知和信号通路的具体改变,包括神经递质(如儿茶酚胺)功能的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信