{"title":"Comparison of different neural network algorithms in the diagnosis of acute appendicitis","authors":"Erkki Pesonen , Matti Eskelinen , Martti Juhola","doi":"10.1016/0020-7101(95)01147-1","DOIUrl":null,"url":null,"abstract":"<div><p>Four different neural network algorithms, binary adaptive resonance theory (ART1), self-organizing map, learning vector quantization and back-propagation, were compared in the diagnosis of acute appendicitis with different parameter groups. The results show that supervised learning algorithms learning vector quantization and back-propagation were better than unsupervised algorithms in this medical decision making problem. The best results were obtained with the learning vector quantization. The self-organizing map algorithm showed good specificity, but this was in conjunction with lower sensitivity. The best parameter group was found to be the clinical signs. It seems beneficial to design a decision support system which uses these methods in the decision making process.</p></div>","PeriodicalId":75935,"journal":{"name":"International journal of bio-medical computing","volume":"40 3","pages":"Pages 227-233"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-7101(95)01147-1","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of bio-medical computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020710195011471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Four different neural network algorithms, binary adaptive resonance theory (ART1), self-organizing map, learning vector quantization and back-propagation, were compared in the diagnosis of acute appendicitis with different parameter groups. The results show that supervised learning algorithms learning vector quantization and back-propagation were better than unsupervised algorithms in this medical decision making problem. The best results were obtained with the learning vector quantization. The self-organizing map algorithm showed good specificity, but this was in conjunction with lower sensitivity. The best parameter group was found to be the clinical signs. It seems beneficial to design a decision support system which uses these methods in the decision making process.