{"title":"kappa-1 Opioid receptors of the temporal cortex are preserved in Alzheimer's disease.","authors":"K B Mackay, D Dewar, J McCulloch","doi":"10.1007/BF02252664","DOIUrl":null,"url":null,"abstract":"<p><p>The binding of [3H]-U-69593 and [3H]-CI-977 to kappa-1 opioid receptors has been examined in the temporal cortex of postmortem brains from patients with Alzheimer's disease and age-matched controls using quantitative autoradiography. There was no significant difference between Alzheimer and control subjects in the level of [3H]-U-69593 and [3H]-CI-977 binding, but ChAT activity was markedly reduced (by 73% compared to controls). These results are not consistent with a presynaptic localisation of kappa-1 receptors on cholinergic terminals in human temporal cortex.</p>","PeriodicalId":16466,"journal":{"name":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","volume":"7 1","pages":"73-9"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02252664","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02252664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The binding of [3H]-U-69593 and [3H]-CI-977 to kappa-1 opioid receptors has been examined in the temporal cortex of postmortem brains from patients with Alzheimer's disease and age-matched controls using quantitative autoradiography. There was no significant difference between Alzheimer and control subjects in the level of [3H]-U-69593 and [3H]-CI-977 binding, but ChAT activity was markedly reduced (by 73% compared to controls). These results are not consistent with a presynaptic localisation of kappa-1 receptors on cholinergic terminals in human temporal cortex.