{"title":"Validation of an automated method of three-dimensional finite element modelling of bone","authors":"J.H. Keyak , M.G. Fourkas , J.M. Meagher , H.B. Skinner","doi":"10.1016/0141-5425(93)90066-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study validated an automated method of finite element modelling of bone from CT scan data. After a fresh-frozen cadaveric femur was modelled, strain gauges were attached to the bone at 11 locations and the femur was mechanically tested by applying a load to the femoral head. Linear regression analysis was used to correlate the strains predicted by the model with the experimentally measured strains. The regression results were significant (<em>P</em> < 0.001), indicating that the strain calculated by the FE model is a valid predictor of the measured strain. Verification of the surface strains also supports the validity of the strains and stresses predicted inside the bone. The present study provides a strong rationale for use of this modelling method as a research tool and in possible clinical applications.</p></div>","PeriodicalId":75992,"journal":{"name":"Journal of biomedical engineering","volume":"15 6","pages":"Pages 505-509"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-5425(93)90066-8","citationCount":"195","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0141542593900668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 195
Abstract
This study validated an automated method of finite element modelling of bone from CT scan data. After a fresh-frozen cadaveric femur was modelled, strain gauges were attached to the bone at 11 locations and the femur was mechanically tested by applying a load to the femoral head. Linear regression analysis was used to correlate the strains predicted by the model with the experimentally measured strains. The regression results were significant (P < 0.001), indicating that the strain calculated by the FE model is a valid predictor of the measured strain. Verification of the surface strains also supports the validity of the strains and stresses predicted inside the bone. The present study provides a strong rationale for use of this modelling method as a research tool and in possible clinical applications.