K Uğurbil, M Garwood, J Ellermann, K Hendrich, R Hinke, X Hu, S G Kim, R Menon, H Merkle, S Ogawa
{"title":"Imaging at high magnetic fields: initial experiences at 4 T.","authors":"K Uğurbil, M Garwood, J Ellermann, K Hendrich, R Hinke, X Hu, S G Kim, R Menon, H Merkle, S Ogawa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews the preliminary experiences and the results obtained on the human brain at 4 T at the University of Minnesota. Anatomical and functional images are presented. Contrary to initial expectations and the early results, it is possible to obtain high-resolution images of the human brain with exquisite T1 contrast, delineating structures especially in the basal ganglia and thalamus, which were not observed clearly in 1.5-T images until now. These 4-T images are possible using a new approach that achieves maximal contrast for different T1 values at approximately the same repetition time and has built-in tolerance to variations in B1 magnitude. For functional images, the high field provides increased contribution from the venuoles and the capillary bed because the susceptibility-induced alterations in 1/T2* from these small-diameter vessels increase quadratically with the magnitude of the main field. Images obtained with short echo times at 4 T, and by implication at lower fields with correspondingly longer echo times, are expected to be dominated by contributions from large venous vessel or in-flow effects from the large arteries; such images are undesirable because of their poor spatial correspondence with actual sites of neuronal activity.</p>","PeriodicalId":77248,"journal":{"name":"Magnetic resonance quarterly","volume":"9 4","pages":"259-77"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance quarterly","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews the preliminary experiences and the results obtained on the human brain at 4 T at the University of Minnesota. Anatomical and functional images are presented. Contrary to initial expectations and the early results, it is possible to obtain high-resolution images of the human brain with exquisite T1 contrast, delineating structures especially in the basal ganglia and thalamus, which were not observed clearly in 1.5-T images until now. These 4-T images are possible using a new approach that achieves maximal contrast for different T1 values at approximately the same repetition time and has built-in tolerance to variations in B1 magnitude. For functional images, the high field provides increased contribution from the venuoles and the capillary bed because the susceptibility-induced alterations in 1/T2* from these small-diameter vessels increase quadratically with the magnitude of the main field. Images obtained with short echo times at 4 T, and by implication at lower fields with correspondingly longer echo times, are expected to be dominated by contributions from large venous vessel or in-flow effects from the large arteries; such images are undesirable because of their poor spatial correspondence with actual sites of neuronal activity.