K Srinivasan, S C Morris, J E Girard, M C Kline, D J Reeder
{"title":"Enhanced detection of PCR products through use of TOTO and YOYO intercalating dyes with laser induced fluorescence--capillary electrophoresis.","authors":"K Srinivasan, S C Morris, J E Girard, M C Kline, D J Reeder","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in the chemical synthesis of DNA-binding dyes have enhanced detection of polymerase chain reaction (PCR) products by capillary electrophoresis. These dyes are dimers of thiazole orange (TOTO) or oxazole orange (YOYO) and have a very high binding affinity for DNA (Haugland, 1992). These dyes show enhanced fluorescence signals when they bind to double-stranded DNA and their fluorescence in the unbound state is almost zero, making them extremely useful in detecting minute (fg) quantities of DNA. We report here the utility of these dyes in DNA typing applications using a laser-induced fluorescence detector in conjunction with a capillary electrophoresis system.</p>","PeriodicalId":77007,"journal":{"name":"Applied and theoretical electrophoresis : the official journal of the International Electrophoresis Society","volume":"3 5","pages":"235-9"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and theoretical electrophoresis : the official journal of the International Electrophoresis Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments in the chemical synthesis of DNA-binding dyes have enhanced detection of polymerase chain reaction (PCR) products by capillary electrophoresis. These dyes are dimers of thiazole orange (TOTO) or oxazole orange (YOYO) and have a very high binding affinity for DNA (Haugland, 1992). These dyes show enhanced fluorescence signals when they bind to double-stranded DNA and their fluorescence in the unbound state is almost zero, making them extremely useful in detecting minute (fg) quantities of DNA. We report here the utility of these dyes in DNA typing applications using a laser-induced fluorescence detector in conjunction with a capillary electrophoresis system.