X-ray photoelectron spectroscopy studies, surface tension measurements, immobilization of human serum albumin, human fibrinogen and human fibronectin onto ammonia plasma treated surfaces of biomaterials useful for cardiovascular implants and artificial cornea implants.
{"title":"X-ray photoelectron spectroscopy studies, surface tension measurements, immobilization of human serum albumin, human fibrinogen and human fibronectin onto ammonia plasma treated surfaces of biomaterials useful for cardiovascular implants and artificial cornea implants.","authors":"R Sipehia","doi":"10.3109/10731199309117389","DOIUrl":null,"url":null,"abstract":"<p><p>XPS studies of untreated and ammonia plasma treated surfaces of PTFE, ePTFE, Dacron, P(HEMA), PMMA, Silastic and PS were carried out. Ammonia plasma treatment caused significant changes in the surface composition. The curve-fitting results confirmed the incorporation of nitrogen and oxygen in the form of functional groups such as C-N, C=O, C-O, Si-N, Si-OH etc. Increases in the values of surface tension occurred. The surface tension of plasma treated surfaces varied between 44-48 erg/cm2 with the exception of Dacron which became wettable. Enhanced immobilization of human albumin on plasma treated surfaces was achieved. When washed with 0.2% Tween in buffer, these albuminated surfaces were found to be stable compared to control samples. Increased immobilization of human fibrinogen was also observed. The ammonia plasma treated surfaces showed high binding properties and retention for human fibronectin. Ionic interaction between proteins solution and plasma treated surfaces may be cause of the increase attachment of these biological molecules.</p>","PeriodicalId":77039,"journal":{"name":"Biomaterials, artificial cells, and immobilization biotechnology : official journal of the International Society for Artificial Cells and Immobilization Biotechnology","volume":"21 5","pages":"647-58"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10731199309117389","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials, artificial cells, and immobilization biotechnology : official journal of the International Society for Artificial Cells and Immobilization Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10731199309117389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
XPS studies of untreated and ammonia plasma treated surfaces of PTFE, ePTFE, Dacron, P(HEMA), PMMA, Silastic and PS were carried out. Ammonia plasma treatment caused significant changes in the surface composition. The curve-fitting results confirmed the incorporation of nitrogen and oxygen in the form of functional groups such as C-N, C=O, C-O, Si-N, Si-OH etc. Increases in the values of surface tension occurred. The surface tension of plasma treated surfaces varied between 44-48 erg/cm2 with the exception of Dacron which became wettable. Enhanced immobilization of human albumin on plasma treated surfaces was achieved. When washed with 0.2% Tween in buffer, these albuminated surfaces were found to be stable compared to control samples. Increased immobilization of human fibrinogen was also observed. The ammonia plasma treated surfaces showed high binding properties and retention for human fibronectin. Ionic interaction between proteins solution and plasma treated surfaces may be cause of the increase attachment of these biological molecules.