M Crumeyrolle-Arias, J Latouche, P Laniece, Y Charon, H Tricoire, L Valentin, P Roux, G Mirambeau, P Leblanc, G Fillion
{"title":"\"In situ\" characterization of GnRH receptors: use of two radioimagers and comparison with quantitative autoradiography.","authors":"M Crumeyrolle-Arias, J Latouche, P Laniece, Y Charon, H Tricoire, L Valentin, P Roux, G Mirambeau, P Leblanc, G Fillion","doi":"10.3109/10799899409066035","DOIUrl":null,"url":null,"abstract":"<p><p>New radioimagers, the HRRI (high resolution radioimager) and the Phosphorimager (phosphor screen : PS), apt to display more ample linear dose-response scale than radio-sensitive films, were tested in comparison with quantitative autoradiography (QA). GnRH receptor saturation experiments were achieved on tissue sections (rat pituitary, rat brain, human ovary) with a iodinate GnRH agonist (125I-[D-Ala6,Des-Gly10]-LH-RH Ethylamide) for determination of affinity constant (Kd). In rat pituitary, comparable results were obtained with the 3 methods (Kd: 0.4 to 0.6 nM). Discrepancies occurred in the hippocampus and in the granulosa cell layer of the preovulatory follicle, due to low resolutive (PS) or short linear dose-response (films) performances. In the hippocampus GnRH receptor affinity was under-estimated with PS (Kd: 2.3 vs 0.5 and 0.6 nM for QA and HRRI respectively). In the follicular granulosa cell layer it was over-estimated by QA (0.5 vs 50 nM for the HRRI), while PS did not allow resolution of this thin cell layer. In conclusion, the HRRI is a very powerful tool for the quantification of in situ radioligand binding (binding sites study and in situ hybridization) in very discrete areas.</p>","PeriodicalId":16948,"journal":{"name":"Journal of receptor research","volume":"14 3-4","pages":"251-65"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10799899409066035","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of receptor research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10799899409066035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
New radioimagers, the HRRI (high resolution radioimager) and the Phosphorimager (phosphor screen : PS), apt to display more ample linear dose-response scale than radio-sensitive films, were tested in comparison with quantitative autoradiography (QA). GnRH receptor saturation experiments were achieved on tissue sections (rat pituitary, rat brain, human ovary) with a iodinate GnRH agonist (125I-[D-Ala6,Des-Gly10]-LH-RH Ethylamide) for determination of affinity constant (Kd). In rat pituitary, comparable results were obtained with the 3 methods (Kd: 0.4 to 0.6 nM). Discrepancies occurred in the hippocampus and in the granulosa cell layer of the preovulatory follicle, due to low resolutive (PS) or short linear dose-response (films) performances. In the hippocampus GnRH receptor affinity was under-estimated with PS (Kd: 2.3 vs 0.5 and 0.6 nM for QA and HRRI respectively). In the follicular granulosa cell layer it was over-estimated by QA (0.5 vs 50 nM for the HRRI), while PS did not allow resolution of this thin cell layer. In conclusion, the HRRI is a very powerful tool for the quantification of in situ radioligand binding (binding sites study and in situ hybridization) in very discrete areas.