V Waagen, V Partali, I Hollingsaeter, M S Huang, T Anthonsen
{"title":"Stereoselectivity of Baker's yeast reduction of 2-propanones: influence of substituents.","authors":"V Waagen, V Partali, I Hollingsaeter, M S Huang, T Anthonsen","doi":"10.3891/acta.chem.scand.48-0506","DOIUrl":null,"url":null,"abstract":"<p><p>The stereoselectivity of Baker's yeast reduction of prochiral alpha-oxygenated 2-propanones has been studied by varying the substrate structure. The 1-hydroxy-3-methoxy-3-propanone 1a was reduced to the corresponding alcohol (R)-2a with 88% enantiomeric excess. Replacing the hydroxy group in 1a with phenoxy or benzyloxy (1b and 1c) gave the alcohols (S)-2b and (S)-2c with 53 and 32% ee, respectively. Reduction of the methyl ketone 1d gave the alcohol (S)-2d with 91% ee. Attempts to improve the enantioselectivity of the reduction of 1c by lowering the substrate concentration or addition of selective reductase inhibitors had only small effect on the enantioselectivity.</p>","PeriodicalId":76966,"journal":{"name":"Acta chemica Scandinavica (Copenhagen, Denmark : 1989)","volume":"48 6","pages":"506-10"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta chemica Scandinavica (Copenhagen, Denmark : 1989)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3891/acta.chem.scand.48-0506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
The stereoselectivity of Baker's yeast reduction of prochiral alpha-oxygenated 2-propanones has been studied by varying the substrate structure. The 1-hydroxy-3-methoxy-3-propanone 1a was reduced to the corresponding alcohol (R)-2a with 88% enantiomeric excess. Replacing the hydroxy group in 1a with phenoxy or benzyloxy (1b and 1c) gave the alcohols (S)-2b and (S)-2c with 53 and 32% ee, respectively. Reduction of the methyl ketone 1d gave the alcohol (S)-2d with 91% ee. Attempts to improve the enantioselectivity of the reduction of 1c by lowering the substrate concentration or addition of selective reductase inhibitors had only small effect on the enantioselectivity.