Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46.
B ten Brink, M Minekus, J M van der Vossen, R J Leer, J H Huis in't Veld
{"title":"Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46.","authors":"B ten Brink, M Minekus, J M van der Vossen, R J Leer, J H Huis in't Veld","doi":"10.1111/j.1365-2672.1994.tb03057.x","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 1000 lactobacillus strains were isolated and screened for the production of antimicrobial activity, using a target panel of spoilage organisms and pathogens. Only eight positive strains were found; two of these were studied in more detail. Lactobacillus salivarius M7 produces the new broad spectrum bacteriocin salivaricin B which inhibits the growth of Listeria monocytogenes, Bacillus cereus, Brochothrix thermosphacta, Enterococcus faecalis and many lactobacilli. A new atypical bacteriocin produced by Lact. acidophilus M46, acidocin B, combines the inhibition of Clostridium sporogenes with a very narrow activity spectrum within the genus Lactobacillus and was selected for further characterization. Acidocin B is sensitive to trypsin, heat-stable (80 degrees C for 20 min) and can be extracted from the culture supernatant fluid with butanol. Native acidocin B occurs as a large molecular weight complex (100 kDa), while with SDS-PAGE the partly purified activity migrates as a peptide of 2.4 kDa. Optimization of the cultivation conditions resulted in an eightfold increase of the amount of acidocin B produced during growth. Growth is not necessary for acidocin B production; washed producer cells can synthesize the bacteriocin in a chemically defined production medium. The application potential of acidocin B is discussed.</p>","PeriodicalId":22599,"journal":{"name":"The Journal of applied bacteriology","volume":"77 2","pages":"140-8"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1365-2672.1994.tb03057.x","citationCount":"172","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of applied bacteriology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1365-2672.1994.tb03057.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 172
Abstract
Approximately 1000 lactobacillus strains were isolated and screened for the production of antimicrobial activity, using a target panel of spoilage organisms and pathogens. Only eight positive strains were found; two of these were studied in more detail. Lactobacillus salivarius M7 produces the new broad spectrum bacteriocin salivaricin B which inhibits the growth of Listeria monocytogenes, Bacillus cereus, Brochothrix thermosphacta, Enterococcus faecalis and many lactobacilli. A new atypical bacteriocin produced by Lact. acidophilus M46, acidocin B, combines the inhibition of Clostridium sporogenes with a very narrow activity spectrum within the genus Lactobacillus and was selected for further characterization. Acidocin B is sensitive to trypsin, heat-stable (80 degrees C for 20 min) and can be extracted from the culture supernatant fluid with butanol. Native acidocin B occurs as a large molecular weight complex (100 kDa), while with SDS-PAGE the partly purified activity migrates as a peptide of 2.4 kDa. Optimization of the cultivation conditions resulted in an eightfold increase of the amount of acidocin B produced during growth. Growth is not necessary for acidocin B production; washed producer cells can synthesize the bacteriocin in a chemically defined production medium. The application potential of acidocin B is discussed.