R K Maheshwari, G S Sidhu, A K Singh, S S Sivaram, P R Kinchington, J Hay, R M Friedman
{"title":"Defective transport of herpes simplex virus glycoprotein in interferon-treated cells: role of intracellular pH.","authors":"R K Maheshwari, G S Sidhu, A K Singh, S S Sivaram, P R Kinchington, J Hay, R M Friedman","doi":"10.1089/jir.1994.14.319","DOIUrl":null,"url":null,"abstract":"<p><p>We have investigated the mechanism(s) of interferon (IFN)-induced inhibition of assembly steps of herpes simplex virus (HSV-1) in mouse LB cells. Data showed that physiological doses of mouse IFN-beta (10-100 IU/ml) significantly inhibited the infectivity (5- to 100-fold) of HSV-1; however, viral protein synthesis was marginally inhibited (2- to 5-fold). Immunofluorescence studies showed that most of the HSV-1gD glycoprotein accumulated intracellularly in IFN-treated LB and LMtk- cells transfected with gD cDNA, as compared to untreated controls, where most of the gD was localized on the plasma membrane. Double-immunofluorescence studies demonstrated that rhodamine-labeled wheat germ agglutinin (WGA) was co-localized with gD protein, suggesting the block was in the transport from the trans-Golgi to the plasma membrane. IFN treatment of LB and LMtk- cells raised the intracellular pH as measured by DAMP distribution and SNARF-1 using laser spectroscopy; this could play an important role in the inhibition of transport of HSV-1gD.</p>","PeriodicalId":16268,"journal":{"name":"Journal of interferon research","volume":"14 6","pages":"319-24"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jir.1994.14.319","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interferon research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jir.1994.14.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We have investigated the mechanism(s) of interferon (IFN)-induced inhibition of assembly steps of herpes simplex virus (HSV-1) in mouse LB cells. Data showed that physiological doses of mouse IFN-beta (10-100 IU/ml) significantly inhibited the infectivity (5- to 100-fold) of HSV-1; however, viral protein synthesis was marginally inhibited (2- to 5-fold). Immunofluorescence studies showed that most of the HSV-1gD glycoprotein accumulated intracellularly in IFN-treated LB and LMtk- cells transfected with gD cDNA, as compared to untreated controls, where most of the gD was localized on the plasma membrane. Double-immunofluorescence studies demonstrated that rhodamine-labeled wheat germ agglutinin (WGA) was co-localized with gD protein, suggesting the block was in the transport from the trans-Golgi to the plasma membrane. IFN treatment of LB and LMtk- cells raised the intracellular pH as measured by DAMP distribution and SNARF-1 using laser spectroscopy; this could play an important role in the inhibition of transport of HSV-1gD.