Selective inactivation of muscarinic receptor subtypes

Richard M. Eglen, Helen Reddy, Nikki Watson
{"title":"Selective inactivation of muscarinic receptor subtypes","authors":"Richard M. Eglen,&nbsp;Helen Reddy,&nbsp;Nikki Watson","doi":"10.1016/0020-711X(94)90178-3","DOIUrl":null,"url":null,"abstract":"<div><p>Muscarinic receptors exist in multiple subtypes, denoted as M<sub>1</sub>, M<sub>2</sub> M<sub>3</sub> and M<sub>4</sub>, encoded by four distinct but related genes. A fifth gene product, m5, has also been predicted although this sequence awaits a pharmacological equivalent. Many tissues express more than one muscarinic receptor subtype, which may couple to different intracellular effectors and thus have different physiological roles. One way to characterize the role of each receptor is to selectively inactivate one receptor population, thus pharmacologically ‘isolating’ the muscarinic receptor subtype of interest. Selective receptor inactivation can be achieved using either a selective, irreversible antagonist, or protection using a selective, reversible antagonist against a non-selective irreversible antagonist. Therefore, combination of these two approaches may provide optimal selective inactivation. Several muscarinic alkylating agents have been identified, including phenoxybenzamine, EEDQ (<em>N</em>-Ethoxycarbonyl-1-ethoxy-1,2-dihydroquinoline) and propylbenzilylcholine mustard. These irreversible antagonists do not, in general, discriminate between muscarinic receptor subtypes and are frequently used to estimate the affinity and relative efficacy of muscarinic agonists. Consequently, use of these irreversible antagonists provides estimations of the ‘receptor reserve’ associated with a response mediated by muscarinic receptor activation. In contrast, 4-DAMP mustard (4-diphenylacetoxy-<em>N</em>-(2-chloroethyl)piperidine) selectively inactivates M<sub>3</sub> receptors, but will not discriminate between M<sub>1</sub> M <sub>2</sub> or M<sub>4</sub> receptors. In the absence of highly selective alkylating agents, receptor protection by reversible antagonists may be used. Thus, reversible antagonists, such as pirenzepine, methoctramine or <em>para</em>-fluorohexahydrosiladifenidol, at appropriate fractional receptor occupancies, may protect M<sub>1</sub> M<sub>2</sub> or M<sub>3</sub> receptors against alkylation by phenoxybenzamine. Selective alkylation of M<sub>3</sub> receptors by 4-DAMP mustard is enhanced with concurrent M<sub>2</sub> protection. This approach has been applied to defining the role of these muscarinic receptor subtypes in the control of ileal smooth muscle tone. These data suggest that, in ileum, M<sub>2</sub> receptors may act to inhibit β-adrenoceptor activation, thereby offsetting relaxation, while M<sub>3</sub> receptors directly mediate contraction.</p></div>","PeriodicalId":13733,"journal":{"name":"International Journal of Biochemistry","volume":"26 12","pages":"Pages 1357-1368"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-711X(94)90178-3","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020711X94901783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Muscarinic receptors exist in multiple subtypes, denoted as M1, M2 M3 and M4, encoded by four distinct but related genes. A fifth gene product, m5, has also been predicted although this sequence awaits a pharmacological equivalent. Many tissues express more than one muscarinic receptor subtype, which may couple to different intracellular effectors and thus have different physiological roles. One way to characterize the role of each receptor is to selectively inactivate one receptor population, thus pharmacologically ‘isolating’ the muscarinic receptor subtype of interest. Selective receptor inactivation can be achieved using either a selective, irreversible antagonist, or protection using a selective, reversible antagonist against a non-selective irreversible antagonist. Therefore, combination of these two approaches may provide optimal selective inactivation. Several muscarinic alkylating agents have been identified, including phenoxybenzamine, EEDQ (N-Ethoxycarbonyl-1-ethoxy-1,2-dihydroquinoline) and propylbenzilylcholine mustard. These irreversible antagonists do not, in general, discriminate between muscarinic receptor subtypes and are frequently used to estimate the affinity and relative efficacy of muscarinic agonists. Consequently, use of these irreversible antagonists provides estimations of the ‘receptor reserve’ associated with a response mediated by muscarinic receptor activation. In contrast, 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl)piperidine) selectively inactivates M3 receptors, but will not discriminate between M1 M 2 or M4 receptors. In the absence of highly selective alkylating agents, receptor protection by reversible antagonists may be used. Thus, reversible antagonists, such as pirenzepine, methoctramine or para-fluorohexahydrosiladifenidol, at appropriate fractional receptor occupancies, may protect M1 M2 or M3 receptors against alkylation by phenoxybenzamine. Selective alkylation of M3 receptors by 4-DAMP mustard is enhanced with concurrent M2 protection. This approach has been applied to defining the role of these muscarinic receptor subtypes in the control of ileal smooth muscle tone. These data suggest that, in ileum, M2 receptors may act to inhibit β-adrenoceptor activation, thereby offsetting relaxation, while M3 receptors directly mediate contraction.

毒蕈碱受体亚型的选择性失活
毒蕈碱受体存在多种亚型,分别为M1、M2、M3和M4,由四个不同但相关的基因编码。第五个基因产物m5也已被预测,尽管这一序列还有待药理学上的对等物。许多组织表达一种以上的毒蕈碱受体亚型,它们可能与不同的细胞内效应物偶联,从而具有不同的生理作用。表征每种受体作用的一种方法是选择性地灭活一种受体群体,从而在药理学上“分离”感兴趣的毒蕈碱受体亚型。选择性受体失活可以使用选择性的、不可逆的拮抗剂来实现,或者使用选择性的、可逆的拮抗剂来保护非选择性的不可逆拮抗剂。因此,这两种方法的结合可以提供最佳的选择性失活。几种毒蕈碱烷基化剂已被确定,包括苯氧苄胺,EEDQ (n -乙氧羰基-1-乙氧基-1,2-二氢喹啉)和丙基苄基胆碱芥末。这些不可逆拮抗剂一般不区分毒蕈碱受体亚型,经常用于估计毒蕈碱激动剂的亲和力和相对功效。因此,这些不可逆拮抗剂的使用提供了与毒蕈碱受体激活介导的反应相关的“受体储备”的估计。相反,4-DAMP芥末(4-二苯基乙酰氧基- n -(2-氯乙基)哌啶)选择性地失活M3受体,但不会区分M1、m2或M4受体。在没有高选择性烷基化剂的情况下,可以使用可逆拮抗剂来保护受体。因此,可逆拮抗剂,如哌伦齐平、甲氧曲明或对氟六氢西二苯醚醇,在适当的部分受体占用下,可以保护M1、M2或M3受体免受苯氧苄胺的烷基化。4-DAMP对M3受体的选择性烷基化作用在同时保护M2的情况下得到增强。这种方法已被应用于确定这些毒蕈碱受体亚型在控制回肠平滑肌张力中的作用。这些数据表明,在回肠中,M2受体可能抑制β-肾上腺素受体的激活,从而抵消松弛,而M3受体直接介导收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信