{"title":"Direct transfer of rainbow trout to seawater induces several changes in kidney carbohydrate metabolism.","authors":"J L Soengas, J Fuentes, M D Andrés, M Aldegunde","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The levels of glycogen and glucose, and the activities of several key enzymes of glycogenolysis, glycolysis, gluconeogenesis and the pentose phosphate shunt were assessed in kidneys of rainbow trout (Oncorhynchus mykiss) of two sizes (80 and 140 g) after transfer to seawater (28 p.p.t.) during 7 days. The results indicated changes, mainly size-independent, in kidney carbohydrate metabolism during transfer of rainbow trout to seawater. An enhanced glycogenolysis and a concomitant increase in gluconeogenic enzyme activity were clearly observed in kidneys of both sizes of animals during transfer to seawater. Changes are suggested to be related to the known role of kidney as a glucose producer tissue thus satisfying, at least in part, the high energetic requirements of the osmoregulatory work performed by other tissues using glucose as fuel, such as the gills, during adaptation to seawater.</p>","PeriodicalId":21473,"journal":{"name":"Revista espanola de fisiologia","volume":"50 4","pages":"219-27"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista espanola de fisiologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The levels of glycogen and glucose, and the activities of several key enzymes of glycogenolysis, glycolysis, gluconeogenesis and the pentose phosphate shunt were assessed in kidneys of rainbow trout (Oncorhynchus mykiss) of two sizes (80 and 140 g) after transfer to seawater (28 p.p.t.) during 7 days. The results indicated changes, mainly size-independent, in kidney carbohydrate metabolism during transfer of rainbow trout to seawater. An enhanced glycogenolysis and a concomitant increase in gluconeogenic enzyme activity were clearly observed in kidneys of both sizes of animals during transfer to seawater. Changes are suggested to be related to the known role of kidney as a glucose producer tissue thus satisfying, at least in part, the high energetic requirements of the osmoregulatory work performed by other tissues using glucose as fuel, such as the gills, during adaptation to seawater.