{"title":"Lysozyme regulates LPS-induced interleukin-6 release in mice.","authors":"K Takada, N Ohno, T Yadomae","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial lipopolysaccharide (LPS) stimulates the production and release of endogenous mediators [e.g., tumor necrosis factor (TNF), interleukins-1 and -6 (IL-1 and IL-6), and Platelet Activating Factor [PAF] responsible for the pathophysiologic changes and the mortality associated with sepsis. We recently demonstrated that lysozyme (LZM) bound to LPS (LZM-LPS complex) suppresses LPS-induced tumor necrosis factor-alpha (TNF-alpha) production in vivo. In the present study, we investigated the effect of LZM-LPS complex formation on LPS-induced IL-6 production, both in vitro and in vivo. With the addition of LZM-LPS complex, TNF-alpha and IL-6 release was significantly reduced compared with that by LPS in a dose-dependent manner in mouse macrophage-like cells, RAW264.7. IL-6 production in serum by LPS in carrageenan (CAR)-primed mice peaked at 2 hr following injection. LZM-LPS and LZM-Escherichia coli cell complex (as 1 microgram of LPS per mouse) released significantly reduced concentrations of IL-6 in serum (P < 0.01 and P < 0.001 versus CAR-pretreated LPS- or cell-injected mice). These results emphasize the important role of LZM in vivo in the neutralization of endotoxin. However, in the case of IL-6, by administration of a lethal dose of LPS (as 100 micrograms of LPS per mouse), the IL-6 level was reduced by LZM, but a significant concentration of IL-6 was still released; although the TNF- alpha concentration was negligible in this experimental condition. Thus, it is suggested that LZM might regulate the systemic inflammation induced during Gram-negative bacterial infections by inhibiting the release of cytokines in serum.</p>","PeriodicalId":10280,"journal":{"name":"Circulatory shock","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulatory shock","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial lipopolysaccharide (LPS) stimulates the production and release of endogenous mediators [e.g., tumor necrosis factor (TNF), interleukins-1 and -6 (IL-1 and IL-6), and Platelet Activating Factor [PAF] responsible for the pathophysiologic changes and the mortality associated with sepsis. We recently demonstrated that lysozyme (LZM) bound to LPS (LZM-LPS complex) suppresses LPS-induced tumor necrosis factor-alpha (TNF-alpha) production in vivo. In the present study, we investigated the effect of LZM-LPS complex formation on LPS-induced IL-6 production, both in vitro and in vivo. With the addition of LZM-LPS complex, TNF-alpha and IL-6 release was significantly reduced compared with that by LPS in a dose-dependent manner in mouse macrophage-like cells, RAW264.7. IL-6 production in serum by LPS in carrageenan (CAR)-primed mice peaked at 2 hr following injection. LZM-LPS and LZM-Escherichia coli cell complex (as 1 microgram of LPS per mouse) released significantly reduced concentrations of IL-6 in serum (P < 0.01 and P < 0.001 versus CAR-pretreated LPS- or cell-injected mice). These results emphasize the important role of LZM in vivo in the neutralization of endotoxin. However, in the case of IL-6, by administration of a lethal dose of LPS (as 100 micrograms of LPS per mouse), the IL-6 level was reduced by LZM, but a significant concentration of IL-6 was still released; although the TNF- alpha concentration was negligible in this experimental condition. Thus, it is suggested that LZM might regulate the systemic inflammation induced during Gram-negative bacterial infections by inhibiting the release of cytokines in serum.