{"title":"Efficient photocatalytic hydrogen peroxide production induced by the strong internal electric field of all-organic S-scheme heterojunction","authors":"Xueqing Li, Dongyun Chen, Najun Li, Qingfeng Xu, Hua Li, Jianmei Lu","doi":"10.1016/j.jcis.2022.11.146","DOIUrl":null,"url":null,"abstract":"<div><p>Light-driven reaction of oxygen and water to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub><span>) is an environmental protection method, which can convert solar energy into green products. In this work, perylene-3, 4, 9, 10-tetracarboxylic diimide (PDINH) could be recrystallized in situ on the surface of porous carbon nitride (PCN), to obtain an all-organic S-scheme heterojunction (PDINH/PCN). The design of the hierarchical porous photocatalyst improved the mass transfer, enhanced the light absorption and increased specific surface area. Moreover, the construction of the S-scheme heterojunction at the interface of PDINH and PCN exhibited suitable band, which facilitated the separation and transfer of carriers. The H</span><sub>2</sub>O<sub>2</sub> production rate was up to 922.4 μmol g<sup>−1</sup>h<sup>−1</sup>, which was 2.6 and 53.3 times higher than that of PCN and PDINH. Therefore, the all-organic S-scheme heterojunction provides an insight for improving the photocatalytic H<sub>2</sub>O<sub>2</sub> production.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"633 ","pages":"Pages 691-702"},"PeriodicalIF":9.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979722021324","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Light-driven reaction of oxygen and water to hydrogen peroxide (H2O2) is an environmental protection method, which can convert solar energy into green products. In this work, perylene-3, 4, 9, 10-tetracarboxylic diimide (PDINH) could be recrystallized in situ on the surface of porous carbon nitride (PCN), to obtain an all-organic S-scheme heterojunction (PDINH/PCN). The design of the hierarchical porous photocatalyst improved the mass transfer, enhanced the light absorption and increased specific surface area. Moreover, the construction of the S-scheme heterojunction at the interface of PDINH and PCN exhibited suitable band, which facilitated the separation and transfer of carriers. The H2O2 production rate was up to 922.4 μmol g−1h−1, which was 2.6 and 53.3 times higher than that of PCN and PDINH. Therefore, the all-organic S-scheme heterojunction provides an insight for improving the photocatalytic H2O2 production.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies