Dana A.P. Evans , J. Peter, H. Burbach , Fred W. van Leeuwen
{"title":"Somatic mutations in the brain: relationship to aging?","authors":"Dana A.P. Evans , J. Peter, H. Burbach , Fred W. van Leeuwen","doi":"10.1016/0921-8734(95)00022-X","DOIUrl":null,"url":null,"abstract":"<div><p>Genetic instability is generally thought to underlie the process of aging and is predominantly associated with meiosis and mitosis. This review will discuss DNA damage and repair, somatic mutations and somatic recombination events in non-dividing neurons in relation to aging. In general it can be concluded that mutagenesis operates at high frequency in the brain. Present data do not provide clear evidence for accumulating DNA damage or a change in DNA repair activity in the brain with age. However, a linear age-related increase in frameshift mutations has been shown to occur in vasopressin neurons of the rat, revealing a novel post-mitotic mechanism.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"338 1","pages":"Pages 173-182"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(95)00022-X","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349500022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Genetic instability is generally thought to underlie the process of aging and is predominantly associated with meiosis and mitosis. This review will discuss DNA damage and repair, somatic mutations and somatic recombination events in non-dividing neurons in relation to aging. In general it can be concluded that mutagenesis operates at high frequency in the brain. Present data do not provide clear evidence for accumulating DNA damage or a change in DNA repair activity in the brain with age. However, a linear age-related increase in frameshift mutations has been shown to occur in vasopressin neurons of the rat, revealing a novel post-mitotic mechanism.