{"title":"Genotoxicity of mercury compounds. A review","authors":"Silvio De Flora, Carlo Bennicelli, Maria Bagnasco","doi":"10.1016/0165-1110(94)90012-4","DOIUrl":null,"url":null,"abstract":"<div><p>This article reviews literature data concerning the genotoxicity of 29 mercury-containing agents, including laboratory compounds as well as ingredients of preparations used as fungicides, dyes, disinfectants and drugs. A variety of genetic end-points were investigated in bacteria, yeasts, moulds, plants, insects, cultured cells from fishes, rodents or humans, aquatic organisms, amphibians, mammalia and exposed humans. The overall evaluation is quite complex. Mercury compounds failed to induce point mutations in bacteria but often exerted clastogenic effects in eukaryotes, especially by binding SH groups and acting as spindle inhibitors, thereby causing c-mitosis and consequently aneuploidy and/or polyploidy. Inorganic mercury compounds were also found to induce the generation of reactive oxygen species and glutathione depletion in cultured mammalian cells. Although different mercury compounds tended to produce qualitatively comparable genetic effects, which suggests the involvement of a common toxic entity, methylmercury derivatives and other ionizable organomercury compounds were more active in short-term tests than either non-ionizable mercury compounds (e.g., dimethylmercury) or inorganic mercury salts (e.g., mercuric chloride). The results of cytogenetic monitoring in peripheral blood lymphocytes of individuals exposed to elemental mercury or mercury compounds from accidental, occupational or alimentary sources were either negative or borderline or uncertain as to the actual role played by mercury in some positive findings. Both genotoxic and non-genotoxic mechanisms may contribute to the renal carcinogenicity of mercury, which so far has been convincingly demonstrated only in male rodents treated with methylmercury chloride.</p></div>","PeriodicalId":100940,"journal":{"name":"Mutation Research/Reviews in Genetic Toxicology","volume":"317 1","pages":"Pages 57-79"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-1110(94)90012-4","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/Reviews in Genetic Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165111094900124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182
Abstract
This article reviews literature data concerning the genotoxicity of 29 mercury-containing agents, including laboratory compounds as well as ingredients of preparations used as fungicides, dyes, disinfectants and drugs. A variety of genetic end-points were investigated in bacteria, yeasts, moulds, plants, insects, cultured cells from fishes, rodents or humans, aquatic organisms, amphibians, mammalia and exposed humans. The overall evaluation is quite complex. Mercury compounds failed to induce point mutations in bacteria but often exerted clastogenic effects in eukaryotes, especially by binding SH groups and acting as spindle inhibitors, thereby causing c-mitosis and consequently aneuploidy and/or polyploidy. Inorganic mercury compounds were also found to induce the generation of reactive oxygen species and glutathione depletion in cultured mammalian cells. Although different mercury compounds tended to produce qualitatively comparable genetic effects, which suggests the involvement of a common toxic entity, methylmercury derivatives and other ionizable organomercury compounds were more active in short-term tests than either non-ionizable mercury compounds (e.g., dimethylmercury) or inorganic mercury salts (e.g., mercuric chloride). The results of cytogenetic monitoring in peripheral blood lymphocytes of individuals exposed to elemental mercury or mercury compounds from accidental, occupational or alimentary sources were either negative or borderline or uncertain as to the actual role played by mercury in some positive findings. Both genotoxic and non-genotoxic mechanisms may contribute to the renal carcinogenicity of mercury, which so far has been convincingly demonstrated only in male rodents treated with methylmercury chloride.