Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils.
L Masson, Y Comeau, R Brousseau, R Samson, C Greer
{"title":"Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils.","authors":"L Masson, Y Comeau, R Brousseau, R Samson, C Greer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A reporter gene system, containing luxAB and lacZY, was constructed and integrated, using Tn7 transposition, into the chromosome of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading soil bacterium, Pseudomonas cepacia (BRI6001), to monitor its fate when introduced into soil microcosms. The genes were stably maintained in the modified strain of BRI6001, BRI6001L, for more than 300 generations in the absence of selection pressure, and had no apparent effects on biochemical or physiological properties. BRI6001L was easily and rapidly identified as light-emitting blue colonies on 2,4-D medium containing XGal (5-bromo-4-chloro-indolyl-beta-D-galacto-pyranoside) in the presence of n-decanal. Survival rates of BRI6001L introduced into non-sterile soil microcosms were substrate- and contaminant-dependent. The decrease in population density was lowest in a 2,4-D-amended agricultural soil, and highest in a wood-treatment facility soil contaminated with pentachlorophenol, creosote and heavy metals. A viable cell density as low as 10 cfu g-1 was detected in soil microcosms. The biochemical and growth properties of BRI6001 and BRI6001L, and their behaviour when introduced into soil microcosms indicates that BRI6001L can be used as a reliable model to predict the fate of BRI6001 when used to bioaugment contaminated soil.</p>","PeriodicalId":77262,"journal":{"name":"Microbial releases : viruses, bacteria, fungi","volume":"1 4","pages":"209-16"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial releases : viruses, bacteria, fungi","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A reporter gene system, containing luxAB and lacZY, was constructed and integrated, using Tn7 transposition, into the chromosome of a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading soil bacterium, Pseudomonas cepacia (BRI6001), to monitor its fate when introduced into soil microcosms. The genes were stably maintained in the modified strain of BRI6001, BRI6001L, for more than 300 generations in the absence of selection pressure, and had no apparent effects on biochemical or physiological properties. BRI6001L was easily and rapidly identified as light-emitting blue colonies on 2,4-D medium containing XGal (5-bromo-4-chloro-indolyl-beta-D-galacto-pyranoside) in the presence of n-decanal. Survival rates of BRI6001L introduced into non-sterile soil microcosms were substrate- and contaminant-dependent. The decrease in population density was lowest in a 2,4-D-amended agricultural soil, and highest in a wood-treatment facility soil contaminated with pentachlorophenol, creosote and heavy metals. A viable cell density as low as 10 cfu g-1 was detected in soil microcosms. The biochemical and growth properties of BRI6001 and BRI6001L, and their behaviour when introduced into soil microcosms indicates that BRI6001L can be used as a reliable model to predict the fate of BRI6001 when used to bioaugment contaminated soil.