[The prognostic evaluation of acute pancreatitis].

V Violi, M De Bernardinis, A S Boselli, S M Maggiore, L Roncoroni
{"title":"[The prognostic evaluation of acute pancreatitis].","authors":"V Violi,&nbsp;M De Bernardinis,&nbsp;A S Boselli,&nbsp;S M Maggiore,&nbsp;L Roncoroni","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification of severity is one of the most important problems in acute pancreatitis, both for decision-making and classification. Predictive criteria show a wide range of accuracy: clinical examination (on admission: 76-85%); single laboratory data (PCR: 68-98%, C3-C4: 63-72%); multifactorial scoring systems (Ranson: 65-82%, Imrie: 78-95%); diagnostic peritoneal lavage (72-90%); CT features (52-81%). In 1982 we started a prospective evaluation of the prognostic performances of a bayesian statistical model for the prediction of severe vs mild pancreatis and death vs survival, which uses the outcome-related patterns of several variables, assuming their independence, analysed on a data of 44 patients. The performances have been calculated prospectively by comparing the expected vs actual results on 88 further patients (accuracy, sensitivity and specificity, respectively, in the prediction of severe pancreatitis: 92%, 92%, 93%; in the prediction of death: 95%, 97%, 87%). Moreover, the model can represent classes of risk by combining prediction of death + severe pancreatitis (DSP), survival + severe pancreatitis (SSP) and survival + mild pancreatitis (SMP) (accuracy, sensitivity and specificity, respectively, in the prediction of DSP: 97%, 83%, 100%; in the prediction of SSP: 95%, 87%, 97%; in the prediction of SMP: 95%, 97%, 90%). Our model enables clinicians dealing with other population to re-determine different variables or integrate them with new information, whenever available. It seems to be transferable and adaptable, even with a probable further increase of the performances, without compromising the objectivity of the predictive judgement and the homogeneity of the classes of risk.</p>","PeriodicalId":6943,"journal":{"name":"Acta bio-medica de L'Ateneo parmense : organo della Societa di medicina e scienze naturali di Parma","volume":"66 1-2","pages":"35-44"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta bio-medica de L'Ateneo parmense : organo della Societa di medicina e scienze naturali di Parma","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early identification of severity is one of the most important problems in acute pancreatitis, both for decision-making and classification. Predictive criteria show a wide range of accuracy: clinical examination (on admission: 76-85%); single laboratory data (PCR: 68-98%, C3-C4: 63-72%); multifactorial scoring systems (Ranson: 65-82%, Imrie: 78-95%); diagnostic peritoneal lavage (72-90%); CT features (52-81%). In 1982 we started a prospective evaluation of the prognostic performances of a bayesian statistical model for the prediction of severe vs mild pancreatis and death vs survival, which uses the outcome-related patterns of several variables, assuming their independence, analysed on a data of 44 patients. The performances have been calculated prospectively by comparing the expected vs actual results on 88 further patients (accuracy, sensitivity and specificity, respectively, in the prediction of severe pancreatitis: 92%, 92%, 93%; in the prediction of death: 95%, 97%, 87%). Moreover, the model can represent classes of risk by combining prediction of death + severe pancreatitis (DSP), survival + severe pancreatitis (SSP) and survival + mild pancreatitis (SMP) (accuracy, sensitivity and specificity, respectively, in the prediction of DSP: 97%, 83%, 100%; in the prediction of SSP: 95%, 87%, 97%; in the prediction of SMP: 95%, 97%, 90%). Our model enables clinicians dealing with other population to re-determine different variables or integrate them with new information, whenever available. It seems to be transferable and adaptable, even with a probable further increase of the performances, without compromising the objectivity of the predictive judgement and the homogeneity of the classes of risk.

[急性胰腺炎预后评价]。
早期识别严重程度是急性胰腺炎最重要的问题之一,无论是决策还是分类。预测标准显示了广泛的准确性:临床检查(入院时:76-85%);单个实验室数据(PCR: 68-98%, C3-C4: 63-72%);多因素评分系统(Ranson: 65-82%, Imrie: 78-95%);诊断性腹膜灌洗(72-90%);CT表现(52-81%)。1982年,我们开始对贝叶斯统计模型的预后性能进行前瞻性评估,该模型用于预测严重与轻度胰腺炎以及死亡与生存,该模型使用了几个变量的结果相关模式,假设它们是独立的,并对44例患者的数据进行了分析。通过对另外88例患者的预期结果与实际结果进行比较,对这些性能进行了前瞻性计算(预测重症胰腺炎的准确性、敏感性和特异性分别为:92%、92%、93%;死亡预测:95%,97%,87%)。此外,该模型可以通过结合预测死亡+重症胰腺炎(DSP)、生存+重症胰腺炎(SSP)和生存+轻度胰腺炎(SMP)来表示风险等级(DSP预测的准确性、敏感性和特异性分别为97%、83%、100%;预测SSP: 95%, 87%, 97%;预测SMP的比例分别为95%、97%、90%)。我们的模型使临床医生能够在处理其他人群时重新确定不同的变量或将它们与新信息整合,无论何时都可以。它似乎是可转移和可适应的,即使可能进一步增加业绩,而不损害预测判断的客观性和风险类别的同质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信