Liuyang Yang , Dalei Zhang , Haiming Fan , Zhuowei Tan , Shaohua Xing , Xiaorui Guan , Xiu Jiang
{"title":"Investigating the micro-turbulent corrosion mechanism of pipeline defects based on a combined experimental and simulation approach","authors":"Liuyang Yang , Dalei Zhang , Haiming Fan , Zhuowei Tan , Shaohua Xing , Xiaorui Guan , Xiu Jiang","doi":"10.1016/j.jngse.2022.104745","DOIUrl":null,"url":null,"abstract":"<div><p><span>The existence of pipeline defects in oil and gas gathering pipelines predisposed the pipeline to rupture under the synergistic effects<span> of local micro–turbulence and electrochemical corrosion. Here, a combination of experimental and simulation methods was proposed to facilitate the investigation of CO</span></span><sub>2</sub><span> corrosion and the mass transfer process in pipeline defects. The corrosion kinetic characteristics of the defect region were clarified by coupling wire beam microelectrode (WBE) and electrochemical impedance spectroscopy (EIS). Additionally, the effect of flow mass transfer on the corrosion of pipeline defects was investigated by using the existing mass transfer models and COMSOL Multiphysics simulations. The results showed that different locations of the pipeline defects exhibited different mass transfer behavior and corrosion variations. The mass transfer process at the bottom of the defect was lower than that in the upper and lower edge of the defect. Furthermore, the bottom of the defect behaved as an anode and corrodes more severely at low flow velocities. The enhanced mass transfer process led to more severe corrosion at the upper and lower edges of the defect at high flow velocities.</span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"106 ","pages":"Article 104745"},"PeriodicalIF":4.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6
Abstract
The existence of pipeline defects in oil and gas gathering pipelines predisposed the pipeline to rupture under the synergistic effects of local micro–turbulence and electrochemical corrosion. Here, a combination of experimental and simulation methods was proposed to facilitate the investigation of CO2 corrosion and the mass transfer process in pipeline defects. The corrosion kinetic characteristics of the defect region were clarified by coupling wire beam microelectrode (WBE) and electrochemical impedance spectroscopy (EIS). Additionally, the effect of flow mass transfer on the corrosion of pipeline defects was investigated by using the existing mass transfer models and COMSOL Multiphysics simulations. The results showed that different locations of the pipeline defects exhibited different mass transfer behavior and corrosion variations. The mass transfer process at the bottom of the defect was lower than that in the upper and lower edge of the defect. Furthermore, the bottom of the defect behaved as an anode and corrodes more severely at low flow velocities. The enhanced mass transfer process led to more severe corrosion at the upper and lower edges of the defect at high flow velocities.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.