{"title":"The effect of the contact angle on particle stabilization and bridging in water-in-water emulsions","authors":"Yuwen Meng, Taco Nicolai","doi":"10.1016/j.jcis.2023.02.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><p>Water-in-water (W/W) emulsions formed by mixing incompatible polymers in aqueous solution can in some cases be stabilized by adding particles that adsorb spontaneously at the W/W interface. The importance of the contact angle of the particles with the interface on the stability of W/W emulsions is still an outstanding issue. We hypothesize that if the contact angle with the continuous phase is smaller than 90°, particles can bridge dispersed droplets, which enhances the stability of the emulsion.</p></div><div><h3>Experiments</h3><p><span>The W/W emulsions consisted of a dispersed poly(ethylene oxide) (PEO) phase in a continuous dextran phase or vice versa. Gelatin microgels were added and their contact angle was varied by varying the pH. The morphology during aging was observed by </span>microscopy.</p></div><div><h3>Findings</h3><p>The contact angle of the microgels with the PEO phase varied between 110° close to neutral pH and 0° at pH 3 and pH 11. The W/W emulsions were stable only when the contact angle with the continuous phase was smaller than 90°. In this case, microgels could form bridges between dispersed droplets creating a network of droplets.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"638 ","pages":"Pages 506-512"},"PeriodicalIF":9.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723001832","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Hypothesis
Water-in-water (W/W) emulsions formed by mixing incompatible polymers in aqueous solution can in some cases be stabilized by adding particles that adsorb spontaneously at the W/W interface. The importance of the contact angle of the particles with the interface on the stability of W/W emulsions is still an outstanding issue. We hypothesize that if the contact angle with the continuous phase is smaller than 90°, particles can bridge dispersed droplets, which enhances the stability of the emulsion.
Experiments
The W/W emulsions consisted of a dispersed poly(ethylene oxide) (PEO) phase in a continuous dextran phase or vice versa. Gelatin microgels were added and their contact angle was varied by varying the pH. The morphology during aging was observed by microscopy.
Findings
The contact angle of the microgels with the PEO phase varied between 110° close to neutral pH and 0° at pH 3 and pH 11. The W/W emulsions were stable only when the contact angle with the continuous phase was smaller than 90°. In this case, microgels could form bridges between dispersed droplets creating a network of droplets.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies