{"title":"Regeneration of axons in the mouse retina after injury.","authors":"P McConnell, M Berry","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It is generally accepted that most axons in the mammalian CNS show only transient growth in response to injury, and numerous hypotheses have been advanced to account for this phenomenon. Detailed knowledge of the time-course and extent of this so-called 'abortive regeneration' is, however, surprisingly lacking. The retina of the adult albino mouse provides a convenient system in which to quantify the response of central axons to injury, since the retina can be prepared as a whole mount, allowing silver-impregnated axons to be followed along their entire course. Using this experimental model, sprouting of injured axons was observed as early as 14 h post lesion (hpl) with rapid growth (20 micrometers/day on average) continuing until 10 dpl. Thereafter, a decline in the overall growth rate was observed, presumably regenerated sprouts began to degenerate. However, not all axons showed this abortive response: numerous unfasciculated axons continued in random growth until at least 100 dpl. One possible interpretation of these results is that the concept of abortive regeneration of injured axons is untenable in regions of the CNS which are lacking in myelin.</p>","PeriodicalId":75588,"journal":{"name":"Bibliotheca anatomica","volume":" 23","pages":"26-37"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bibliotheca anatomica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is generally accepted that most axons in the mammalian CNS show only transient growth in response to injury, and numerous hypotheses have been advanced to account for this phenomenon. Detailed knowledge of the time-course and extent of this so-called 'abortive regeneration' is, however, surprisingly lacking. The retina of the adult albino mouse provides a convenient system in which to quantify the response of central axons to injury, since the retina can be prepared as a whole mount, allowing silver-impregnated axons to be followed along their entire course. Using this experimental model, sprouting of injured axons was observed as early as 14 h post lesion (hpl) with rapid growth (20 micrometers/day on average) continuing until 10 dpl. Thereafter, a decline in the overall growth rate was observed, presumably regenerated sprouts began to degenerate. However, not all axons showed this abortive response: numerous unfasciculated axons continued in random growth until at least 100 dpl. One possible interpretation of these results is that the concept of abortive regeneration of injured axons is untenable in regions of the CNS which are lacking in myelin.