Joanne L. Allard , Katherine A. Shields , Trent P. Munro , Linda H.L. Lua
{"title":"Strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning","authors":"Joanne L. Allard , Katherine A. Shields , Trent P. Munro , Linda H.L. Lua","doi":"10.1016/j.cbi.2022.109996","DOIUrl":null,"url":null,"abstract":"<div><p><span>Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, </span>fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial application of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.</p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"363 ","pages":"Article 109996"},"PeriodicalIF":4.7000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279722002010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial application of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.