{"title":"Metabolic control of cardiac output response to exercise in McArdle's disease.","authors":"S F Lewis, R G Haller, J D Cook, C G Blomqvist","doi":"10.1152/jappl.1984.57.6.1749","DOIUrl":null,"url":null,"abstract":"<p><p>During dynamic exercise cardiac output (Q) normally increases approximately 5 liters per liter of increase in O2 uptake (Vo2) (i.e., delta Q/delta Vo2 approximately equal to 5), indicative of a tight coupling between systemic O2 transport and utilization. We studied four patients with muscle phosphorylase deficiency (McArdle's disease) in whom Q was normal at rest, but delta Q/delta Vo2 was 14.1 +/- 1.3 during bicycle exercise. Procedures designed to alter the availability of substrates were employed to test the hypothesis that the increased delta Q/delta Vo2 is linked to the abnormal metabolic state of skeletal muscle. Fasting plus prolonged moderate exercise was used to increase the availability of plasma free fatty acid (FFA) and resulted in a normalization of delta Q/delta Vo2 (5.3 +/- 0.4). Hyperglycemia (70% above control levels) partially normalized delta Q/delta Vo2. Nicotinic acid lowered plasma FFA concentration and dramatically increased delta Q/delta Vo2 (4.6 to 13.7) when administered after fasting plus prolonged exercise in one patient. Glucose infusion after nicotinic acid administration markedly lowered delta Q/delta Vo2. The results support the hypothesis and suggest that the metabolic state of skeletal muscle, possibly via activation of muscle afferents, participates in the regulation of systemic O2 transport.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 6","pages":"1749-53"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.6.1749","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.6.1749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
During dynamic exercise cardiac output (Q) normally increases approximately 5 liters per liter of increase in O2 uptake (Vo2) (i.e., delta Q/delta Vo2 approximately equal to 5), indicative of a tight coupling between systemic O2 transport and utilization. We studied four patients with muscle phosphorylase deficiency (McArdle's disease) in whom Q was normal at rest, but delta Q/delta Vo2 was 14.1 +/- 1.3 during bicycle exercise. Procedures designed to alter the availability of substrates were employed to test the hypothesis that the increased delta Q/delta Vo2 is linked to the abnormal metabolic state of skeletal muscle. Fasting plus prolonged moderate exercise was used to increase the availability of plasma free fatty acid (FFA) and resulted in a normalization of delta Q/delta Vo2 (5.3 +/- 0.4). Hyperglycemia (70% above control levels) partially normalized delta Q/delta Vo2. Nicotinic acid lowered plasma FFA concentration and dramatically increased delta Q/delta Vo2 (4.6 to 13.7) when administered after fasting plus prolonged exercise in one patient. Glucose infusion after nicotinic acid administration markedly lowered delta Q/delta Vo2. The results support the hypothesis and suggest that the metabolic state of skeletal muscle, possibly via activation of muscle afferents, participates in the regulation of systemic O2 transport.