{"title":"Effect of temperature and baroreceptor stimulation on reflex venomotor responses.","authors":"A Tripathi, X Shi, C B Wenger, E R Nadel","doi":"10.1152/jappl.1984.57.5.1384","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the interaction of thermal reflexes and baroreflexes in the control of the peripheral veins, we studied in supine humans the effects of lower body negative pressure (LBNP) and neck suction (NS) on forearm veins at ambient temperatures (Ta) of 18, 28, and 37 degrees C. Forearm venous volume (FVV)-venous pressure (FVP) relations (forearm venous capacitance) on six subjects showed an increase from 18 through 28 to 37 degrees C (P less than 0.001). Heart rate increased (P less than 0.001) and forearm venous capacitance decreased (P less than 0.001) in proportion to the level of LBNP applied from 20 to 50 Torr at all Ta. At 50 Torr LBNP, FVV at 30 cmH2O, FVP decreased from control values of 2.5, 3.8, and 4.4 to 1.6, 2.7, and 3.4 ml/100 ml at 18, 28, and 37 degrees C, respectively. We also studied venomotor responses using the occluded limb technique. Although LBNP caused venoconstriction, NS applied either alone or during LBNP produced no change in venomotor tone. Therefore we concluded that carotid baroreceptors play little role in reflex venomotor adjustments. Since changes in mean arterial and pulse pressures during LBNP did not account for the observed venomotor responses, we concluded that low-pressure baroreceptors initiate significant venoconstrictor reflexes over a wide range of Ta.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 5","pages":"1384-92"},"PeriodicalIF":0.0000,"publicationDate":"1984-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1384","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.5.1384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
To investigate the interaction of thermal reflexes and baroreflexes in the control of the peripheral veins, we studied in supine humans the effects of lower body negative pressure (LBNP) and neck suction (NS) on forearm veins at ambient temperatures (Ta) of 18, 28, and 37 degrees C. Forearm venous volume (FVV)-venous pressure (FVP) relations (forearm venous capacitance) on six subjects showed an increase from 18 through 28 to 37 degrees C (P less than 0.001). Heart rate increased (P less than 0.001) and forearm venous capacitance decreased (P less than 0.001) in proportion to the level of LBNP applied from 20 to 50 Torr at all Ta. At 50 Torr LBNP, FVV at 30 cmH2O, FVP decreased from control values of 2.5, 3.8, and 4.4 to 1.6, 2.7, and 3.4 ml/100 ml at 18, 28, and 37 degrees C, respectively. We also studied venomotor responses using the occluded limb technique. Although LBNP caused venoconstriction, NS applied either alone or during LBNP produced no change in venomotor tone. Therefore we concluded that carotid baroreceptors play little role in reflex venomotor adjustments. Since changes in mean arterial and pulse pressures during LBNP did not account for the observed venomotor responses, we concluded that low-pressure baroreceptors initiate significant venoconstrictor reflexes over a wide range of Ta.