{"title":"Changes in serum influence the fatty acid composition of established cell lines.","authors":"L L Stoll, A A Spector","doi":"10.1007/BF02618879","DOIUrl":null,"url":null,"abstract":"<p><p>The fatty acid composition of different kinds of commercially available serum used to supplement cell culture media differs widely. As compared with fetal bovine serum, horse and bovine calf serum have a very high content of linoleic acid (18:2) and are low in arachidonic acid (20:4). (Fatty acids are abbreviated as number of carbon atoms:number of double bonds). Swine serum contains substantial amounts of both 18:2 and 20:4. Only fetal bovine serum contains more than 1% docosahexaenoic acid (22:6). Considerable differences in fatty acid composition occur when cells are grown in media containing any of these different serum supplements. The 18:2 and 20:4 content of 3T3 mouse fibroblast phospholipids is highest when the medium contains horse serum, intermediate with bovine calf serum, and lowest with swine or fetal bovine serum. Likewise, the highest phospholipid 18:2 content in Madin-Darby canine kidney cells (MDCK) occurs when the medium contains horse serum. With MDCK cells, however, growth in swine serum produces the highest 20:4 content. The 3T3 cell phospholipids accumulate more than 1% 22:6 only when the medium contains fetal bovine serum, whereas in no case do the MDCK cell phospholipids accumulate appreciable amounts of 22:6. The fact that the cellular fatty acid composition is likely to change should be taken into account when changes are contemplated in the serum used to grow established cell lines.</p>","PeriodicalId":13317,"journal":{"name":"In Vitro","volume":"20 9","pages":"732-8"},"PeriodicalIF":0.0000,"publicationDate":"1984-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02618879","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02618879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
The fatty acid composition of different kinds of commercially available serum used to supplement cell culture media differs widely. As compared with fetal bovine serum, horse and bovine calf serum have a very high content of linoleic acid (18:2) and are low in arachidonic acid (20:4). (Fatty acids are abbreviated as number of carbon atoms:number of double bonds). Swine serum contains substantial amounts of both 18:2 and 20:4. Only fetal bovine serum contains more than 1% docosahexaenoic acid (22:6). Considerable differences in fatty acid composition occur when cells are grown in media containing any of these different serum supplements. The 18:2 and 20:4 content of 3T3 mouse fibroblast phospholipids is highest when the medium contains horse serum, intermediate with bovine calf serum, and lowest with swine or fetal bovine serum. Likewise, the highest phospholipid 18:2 content in Madin-Darby canine kidney cells (MDCK) occurs when the medium contains horse serum. With MDCK cells, however, growth in swine serum produces the highest 20:4 content. The 3T3 cell phospholipids accumulate more than 1% 22:6 only when the medium contains fetal bovine serum, whereas in no case do the MDCK cell phospholipids accumulate appreciable amounts of 22:6. The fact that the cellular fatty acid composition is likely to change should be taken into account when changes are contemplated in the serum used to grow established cell lines.