The light-harvesting polypeptides of Rhodospirillum rubrum. II. Localisation of the amino-terminal regions of the light-harvesting polypeptides B 870-alpha and B 870-beta and the reaction-centre subunit L at the cytoplasmic side of the photosynthetic membrane of Rhodospirillum rubrum G-9+.
R A Brunisholz, V Wiemken, F Suter, R Bachofen, H Zuber
{"title":"The light-harvesting polypeptides of Rhodospirillum rubrum. II. Localisation of the amino-terminal regions of the light-harvesting polypeptides B 870-alpha and B 870-beta and the reaction-centre subunit L at the cytoplasmic side of the photosynthetic membrane of Rhodospirillum rubrum G-9+.","authors":"R A Brunisholz, V Wiemken, F Suter, R Bachofen, H Zuber","doi":"10.1515/bchm2.1984.365.2.689","DOIUrl":null,"url":null,"abstract":"<p><p>The unspecific proteinase K and the specific proteases alpha-chymotrypsin, trypsin and S. aureus V 8 protease were used in order to determine the orientation of the polypeptides B 870-alpha and B 870-beta from the major antenna complex B 870 of Rs. rubrum G-9+ within the chromatophore membrane (inside-out vesicle). Although B 870-alpha exhibits cleavable peptide bonds, treatment with specific proteases yielded splitting only in B 870-beta within the N-terminal region. In the case of proteinase K, which was most effective, mainly 6 (B 870-alpha) and 16 (B 870-beta) amino acid residues were removed from their N-terminal parts as proved by means of Edman degradation of cleavage products. The major peptide bonds cleaved were identified as Gln6-Leu7 in B 870-alpha and as Lys16-Glu17 in B 870-beta. The central hydrophobic stretch regions and the relatively hydrophilic C-terminal parts of both light-harvesting polypeptides were not affected by proteinase K. On the basis of these degradation experiments a transmembrane orientation of B 870-alpha and B 870-beta is postulated, with their N-terminal towards the cytoplasm and their C-termini towards periplasm with regard to the photosynthetic membrane. This hypothesis is supported by the transmembrane model proposed by Brunisholz et al. (Hoppe-Seyler's Z., Physiol. Chem., (1984) 365, 675-688) in which the hydrophobic stretch of B 870-alpha and of B 870-beta forming an alpha-helix would span the membrane once. Organic solvent extraction of chromatophores treated with proteinase K yielded a fairly pure polypeptide fragment with an apparent molecular mass of 14000 Da. Its N-terminal amino-acid sequence is identical with the sequence within the N-terminal region of the reaction centre subunit L of Rs. rubrum G-9+. Thus it is most likely that as in the case of B 870-beta, proteinase K removed 16 amino acid residues from the N-terminal part of subunit L. This subunit therefore also seems to be exposed at the surface of the cytoplasmic side of the chromatophore membrane.</p>","PeriodicalId":13015,"journal":{"name":"Hoppe-Seyler's Zeitschrift fur physiologische Chemie","volume":"365 7","pages":"689-701"},"PeriodicalIF":0.0000,"publicationDate":"1984-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bchm2.1984.365.2.689","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hoppe-Seyler's Zeitschrift fur physiologische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bchm2.1984.365.2.689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
The unspecific proteinase K and the specific proteases alpha-chymotrypsin, trypsin and S. aureus V 8 protease were used in order to determine the orientation of the polypeptides B 870-alpha and B 870-beta from the major antenna complex B 870 of Rs. rubrum G-9+ within the chromatophore membrane (inside-out vesicle). Although B 870-alpha exhibits cleavable peptide bonds, treatment with specific proteases yielded splitting only in B 870-beta within the N-terminal region. In the case of proteinase K, which was most effective, mainly 6 (B 870-alpha) and 16 (B 870-beta) amino acid residues were removed from their N-terminal parts as proved by means of Edman degradation of cleavage products. The major peptide bonds cleaved were identified as Gln6-Leu7 in B 870-alpha and as Lys16-Glu17 in B 870-beta. The central hydrophobic stretch regions and the relatively hydrophilic C-terminal parts of both light-harvesting polypeptides were not affected by proteinase K. On the basis of these degradation experiments a transmembrane orientation of B 870-alpha and B 870-beta is postulated, with their N-terminal towards the cytoplasm and their C-termini towards periplasm with regard to the photosynthetic membrane. This hypothesis is supported by the transmembrane model proposed by Brunisholz et al. (Hoppe-Seyler's Z., Physiol. Chem., (1984) 365, 675-688) in which the hydrophobic stretch of B 870-alpha and of B 870-beta forming an alpha-helix would span the membrane once. Organic solvent extraction of chromatophores treated with proteinase K yielded a fairly pure polypeptide fragment with an apparent molecular mass of 14000 Da. Its N-terminal amino-acid sequence is identical with the sequence within the N-terminal region of the reaction centre subunit L of Rs. rubrum G-9+. Thus it is most likely that as in the case of B 870-beta, proteinase K removed 16 amino acid residues from the N-terminal part of subunit L. This subunit therefore also seems to be exposed at the surface of the cytoplasmic side of the chromatophore membrane.