Interaction of AMP deaminase with RNA

Nobuaki Ogasawara, Haruko Goto, Yasukazu Yamada
{"title":"Interaction of AMP deaminase with RNA","authors":"Nobuaki Ogasawara,&nbsp;Haruko Goto,&nbsp;Yasukazu Yamada","doi":"10.1016/0005-2744(81)90096-6","DOIUrl":null,"url":null,"abstract":"<div><p>tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1–7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.</p></div>","PeriodicalId":100159,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology","volume":"661 1","pages":"Pages 164-169"},"PeriodicalIF":0.0000,"publicationDate":"1981-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2744(81)90096-6","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0005274481900966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1–7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.

AMP脱氨酶与RNA的相互作用
tRNA、18s和28s核糖体rna激活肌肉AMP脱氨酶(AMP氨基水解酶,EC 3.5.4.6),抑制肝脏和心脏AMP脱氨酶。由于RNA的作用在RNAase处理后消失,因此大分子结构对酶活性的调节是必不可少的。蔗糖密度离心实验清楚地表明纯化的肌肉AMP脱氨酶与tRNA、18s和28s rna结合。这种结合是可逆的,对pH和KCl浓度的变化有反应。在0.1 M KCl条件下,酶的结合在pH 5.1-7.0范围内稳定,但在pH 7.5范围内大部分酶解离。低于0.1 M的KCl对酶- rna复合物的解离没有影响,但在0.15 M的KCl下,复合物被部分解离,在0.2 M的KCl下,大部分酶被释放。各种核苷酸也有效地将酶从复合物中分离出来。结合是饱和的,计算出每mol 28s RNA结合的肌肉AMP脱氨酶分子的最大数量约为。30.肝脏和心脏AMP脱氨酶也被发现与RNA相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信