{"title":"Revisiting the properties of lithium chloride as “water-in-salt” electrolyte for pouch cell electrochemical capacitors","authors":"Aritsa Bunpheng , Phongphot Sakulaue , Wisit Hirunpinyopas , Khanin Nueangnoraj , Santamon Luanwuthi , Pawin Iamprasertkun","doi":"10.1016/j.jelechem.2023.117645","DOIUrl":null,"url":null,"abstract":"<div><p>The search for alternative electrolytes is extremely topical in recent years with the “water-in-salt” electrolyte especially, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) coming to the fore in the context of high-voltage electrolytes. However, “water-in-LiTFSI” exhibits ultra-high cost and low ionic transport when compared with the aqueous lithium- halide, -nitrate as well as -sulphate salts. This work rediscovered the properties of a “water-in-salt” made from a superconcentrated 20 m (equivalent to 14.28 M) lithium chloride electrolyte. The electrolyte was tested using various carbon-based materials as a model system, and the finding was then expanded to a pouch cell supercapacitor. It is found that the use of superconcentrated LiCl could enhance the potential window of the supercapacitor in both half-cell electrodes (approximately of 3.0 V), and pouch-cell devices (1.4 V evaluated at 100 mV s<sup>−1</sup>). This work shows the fundamental insight into the physical and electrochemical properties of LiCl for possible alternative use as a cheap “water-in-salt” electrolyte in energy storage apart from LiTFSI.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117645"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005052","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The search for alternative electrolytes is extremely topical in recent years with the “water-in-salt” electrolyte especially, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) coming to the fore in the context of high-voltage electrolytes. However, “water-in-LiTFSI” exhibits ultra-high cost and low ionic transport when compared with the aqueous lithium- halide, -nitrate as well as -sulphate salts. This work rediscovered the properties of a “water-in-salt” made from a superconcentrated 20 m (equivalent to 14.28 M) lithium chloride electrolyte. The electrolyte was tested using various carbon-based materials as a model system, and the finding was then expanded to a pouch cell supercapacitor. It is found that the use of superconcentrated LiCl could enhance the potential window of the supercapacitor in both half-cell electrodes (approximately of 3.0 V), and pouch-cell devices (1.4 V evaluated at 100 mV s−1). This work shows the fundamental insight into the physical and electrochemical properties of LiCl for possible alternative use as a cheap “water-in-salt” electrolyte in energy storage apart from LiTFSI.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.