Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PVnMo(12-n) (n = 1, 2, 3) over indium electrode

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wencong Sun , Dong Yao , Yuehua Tai , Li Zhou , Wenxue Tian , Min Yang , Chunxiang Li
{"title":"Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PVnMo(12-n) (n = 1, 2, 3) over indium electrode","authors":"Wencong Sun ,&nbsp;Dong Yao ,&nbsp;Yuehua Tai ,&nbsp;Li Zhou ,&nbsp;Wenxue Tian ,&nbsp;Min Yang ,&nbsp;Chunxiang Li","doi":"10.1016/j.jcis.2023.06.167","DOIUrl":null,"url":null,"abstract":"<div><p><span>The multistep proton-coupled electron transfer<span> (PCET) processes are beneficial for products distribution and selectivity of the electrocatalytic CO</span></span><sub>2</sub> reduction reaction (CO<sub>2</sub><span>RR), which are affected by the nature of the catalyst and electrolyte at electrode–electrolyte interface. Polyoxometalates (POMs) are electron regulators of PCET processes, which can catalyze CO</span><sub>2</sub><span>RR effectively. Accordingly, the commercial indium electrodes are combined in this work with a series of Keggin-type POMs (PV</span><sub>n</sub>Mo<sub>(12-n)</sub>O<sub>40</sub>)<sup>(</sup><em><sup>n</sup></em><sup>+3)−</sup>, n = 1, 2, 3) to process CO<sub>2</sub><span>RR with Faradaic efficiency toward ethanol reaching 93.4% at −0.3 V (vs. RHE). The cyclic voltammetry and X-ray photoelectron spectroscopy results reveal the activation of CO</span><sub>2</sub> molecules by the first PCET process of the V<sup>Ⅴ/Ⅳ</sup> in POM. Subsequently, the PCET process of Mo<sup>Ⅵ/Ⅴ</sup><span> results the oxidation of the electrode, causing the loss of In</span><sup>0</sup> active sites. Electrochemical <em>in-situ</em><span> infrared spectroscopy confirms the weak adsorption of *CO at the later stage of electrolysis due to the oxidation of the In</span><sup>0</sup> active sites. The indium electrode in PV<sub>3</sub>Mo<sub>9</sub> system retains more In<sup>0</sup> active sites owing to the highest V-substitution ratio, thereby ensuring a high adsorption ratio of *CO and C<img><span>C coupling. In sum, the regulation of the interface microenvironment by POM electrolyte additives can be used to boost the performance of CO</span><sub>2</sub>RR.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"650 ","pages":"Pages 121-131"},"PeriodicalIF":9.7000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979723011955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The multistep proton-coupled electron transfer (PCET) processes are beneficial for products distribution and selectivity of the electrocatalytic CO2 reduction reaction (CO2RR), which are affected by the nature of the catalyst and electrolyte at electrode–electrolyte interface. Polyoxometalates (POMs) are electron regulators of PCET processes, which can catalyze CO2RR effectively. Accordingly, the commercial indium electrodes are combined in this work with a series of Keggin-type POMs (PVnMo(12-n)O40)(n+3)−, n = 1, 2, 3) to process CO2RR with Faradaic efficiency toward ethanol reaching 93.4% at −0.3 V (vs. RHE). The cyclic voltammetry and X-ray photoelectron spectroscopy results reveal the activation of CO2 molecules by the first PCET process of the VⅤ/Ⅳ in POM. Subsequently, the PCET process of MoⅥ/Ⅴ results the oxidation of the electrode, causing the loss of In0 active sites. Electrochemical in-situ infrared spectroscopy confirms the weak adsorption of *CO at the later stage of electrolysis due to the oxidation of the In0 active sites. The indium electrode in PV3Mo9 system retains more In0 active sites owing to the highest V-substitution ratio, thereby ensuring a high adsorption ratio of *CO and CC coupling. In sum, the regulation of the interface microenvironment by POM electrolyte additives can be used to boost the performance of CO2RR.

Abstract Image

PVnMo(12-n) (n = 1,2,3)在铟电极上通过质子耦合电子转移过程高效电催化CO2还原为乙醇
多步质子耦合电子转移(PCET)过程有利于电催化CO2还原反应(CO2RR)的产物分布和选择性,这受催化剂和电极-电解质界面电解质性质的影响。多金属氧酸盐(pom)是PCET过程的电子调节剂,能有效催化CO2RR。因此,在这项工作中,将商业铟电极与一系列keggin型pom (PVnMo(12-n)O40)(n+3)−,n = 1,2,3)相结合,在−0.3 V(相对于RHE)下,以法拉第效率达到93.4%的乙醇处理CO2RR。循环伏安法和x射线光电子能谱结果揭示了CO2分子在POM中通过VⅤ/Ⅳ的第一次PCET过程被活化。随后,MoⅥ/Ⅴ的PCET过程导致电极氧化,导致In0活性位点的损失。电化学原位红外光谱证实,在电解后期,由于In0活性位点的氧化,*CO的吸附较弱。PV3Mo9体系中的铟电极由于v取代比最高,保留了更多的In0活性位点,从而保证了*CO和CC耦合的高吸附率。综上所述,POM电解质添加剂对界面微环境的调节可以提高CO2RR的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信