Shirley Nakagaki , Guilherme Sippel Machado , João Felipe Stival , Everton Henrique dos Santos , Gabriel Machado Silva , Fernando Wypych
{"title":"Natural and synthetic layered hydroxide salts (LHS): Recent advances and application perspectives emphasizing catalysis","authors":"Shirley Nakagaki , Guilherme Sippel Machado , João Felipe Stival , Everton Henrique dos Santos , Gabriel Machado Silva , Fernando Wypych","doi":"10.1016/j.progsolidstchem.2021.100335","DOIUrl":null,"url":null,"abstract":"<div><p>Layered hydroxide salts (LHS) are synthetic and natural materials with the general chemical composition M<sup>2+</sup>(OH)<sub>2−<em>x</em></sub>(A<sup><em>m</em>−</sup>)<sub><em>x</em>/<em>m</em></sub> (M<sup>2+</sup> is a divalent cation, normally Mg<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Ca<sup>2+</sup>, Cd<sup>2+</sup>, Co<sup>2+</sup>or Cu<sup>2+</sup>, and (A<sup><em>m</em>−</sup>)<sub><em>x</em>/<em>m</em></sub>·<em>n</em>H<sub>2</sub>O is a hydrated counter-ion). In most of the cases, the LHS structures are based on the modification of the layered magnesium hydroxide-like structure (brucite, Mg(OH)<sub>2</sub>), in which part of the structural hydroxide groups (OH<sup>−</sup>) from the Mg<sup>2+</sup>centered octahedra sharing edges are replaced by water molecules or anions. This process creates a net positive charge in the layers, which needs to be compensated with the intercalation/grafting of hydrated anions. Despite LHS versatility and having great potential for academic and industrial applications due to the variable chemical compositions, structures, and properties, this material is less explored in the literature. In the present review, the structures of the majority of the LHS materials are described and their potential applications are discussed, emphasizing their usage as supports for metalloporphyrins and utilization in different catalytic reactions.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"64 ","pages":"Article 100335"},"PeriodicalIF":9.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2021.100335","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678621000285","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 11
Abstract
Layered hydroxide salts (LHS) are synthetic and natural materials with the general chemical composition M2+(OH)2−x(Am−)x/m (M2+ is a divalent cation, normally Mg2+, Ni2+, Zn2+, Ca2+, Cd2+, Co2+or Cu2+, and (Am−)x/m·nH2O is a hydrated counter-ion). In most of the cases, the LHS structures are based on the modification of the layered magnesium hydroxide-like structure (brucite, Mg(OH)2), in which part of the structural hydroxide groups (OH−) from the Mg2+centered octahedra sharing edges are replaced by water molecules or anions. This process creates a net positive charge in the layers, which needs to be compensated with the intercalation/grafting of hydrated anions. Despite LHS versatility and having great potential for academic and industrial applications due to the variable chemical compositions, structures, and properties, this material is less explored in the literature. In the present review, the structures of the majority of the LHS materials are described and their potential applications are discussed, emphasizing their usage as supports for metalloporphyrins and utilization in different catalytic reactions.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.