{"title":"Manipulation of nucleation and polymorphism by laser irradiation","authors":"Teruki Sugiyama , Shun-Fa Wang","doi":"10.1016/j.jphotochemrev.2022.100530","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recently, laser-induced nucleation (LIN) has been attracting significant attention because of its many advantages, including non-mechanical contact, spatiotemporal controllability, and high nucleation probability. Consequently, there is a high demand for precise control methods for polymorphism, particularly in the pharmaceutical industry. The precise control of nucleation and polymorphism, as well as the expansion of their versatility, is indispensable in elucidating the mechanism of nucleation and polymorphism. If LIN can be exploited to precisely control polymorphism, it will be possible to appropriately control the solubility, bioavailability, and stability of targets. Currently, numerous mechanisms for LIN involving targets, solvents, laser light sources, and additives have been proposed. In this review, the authors summarize the history and current state of the research on nucleation and LIN-controlled polymorphism reported over the past two decades while focusing on the different light sources (pulsed laser </span><em>vs.</em> continuous-wave laser). Furthermore, the authors introduce the classical nucleation and two-step nucleation models and discuss the similarities and differences in the mechanisms of nucleation and polymorphism control based on these two models.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"52 ","pages":"Article 100530"},"PeriodicalIF":12.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000491","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7
Abstract
Recently, laser-induced nucleation (LIN) has been attracting significant attention because of its many advantages, including non-mechanical contact, spatiotemporal controllability, and high nucleation probability. Consequently, there is a high demand for precise control methods for polymorphism, particularly in the pharmaceutical industry. The precise control of nucleation and polymorphism, as well as the expansion of their versatility, is indispensable in elucidating the mechanism of nucleation and polymorphism. If LIN can be exploited to precisely control polymorphism, it will be possible to appropriately control the solubility, bioavailability, and stability of targets. Currently, numerous mechanisms for LIN involving targets, solvents, laser light sources, and additives have been proposed. In this review, the authors summarize the history and current state of the research on nucleation and LIN-controlled polymorphism reported over the past two decades while focusing on the different light sources (pulsed laser vs. continuous-wave laser). Furthermore, the authors introduce the classical nucleation and two-step nucleation models and discuss the similarities and differences in the mechanisms of nucleation and polymorphism control based on these two models.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.