The Dysferlin C2A Domain Binds PI(4,5)P2 and Penetrates Membranes

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ethiene Kwok , Shauna C. Otto , Patricia Khuu , Andrew P. Carpenter , Sara J. Codding , Patrick N. Reardon , Juan Vanegas , Tanushri M. Kumar , Chapman J. Kuykendall , Ryan A. Mehl , Joe Baio , Colin P. Johnson
{"title":"The Dysferlin C2A Domain Binds PI(4,5)P2 and Penetrates Membranes","authors":"Ethiene Kwok ,&nbsp;Shauna C. Otto ,&nbsp;Patricia Khuu ,&nbsp;Andrew P. Carpenter ,&nbsp;Sara J. Codding ,&nbsp;Patrick N. Reardon ,&nbsp;Juan Vanegas ,&nbsp;Tanushri M. Kumar ,&nbsp;Chapman J. Kuykendall ,&nbsp;Ryan A. Mehl ,&nbsp;Joe Baio ,&nbsp;Colin P. Johnson","doi":"10.1016/j.jmb.2023.168193","DOIUrl":null,"url":null,"abstract":"<div><p>Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca<sup>2+</sup><span> converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.</span></p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"435 17","pages":"Article 168193"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283623002929","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.

Abstract Image

Dysferlin C2A结构域结合PI(4,5)P2并穿透膜
异铁蛋白是一种大的膜蛋白,主要存在于横纹肌中。异常铁蛋白活性的丧失与胞外分泌减少、细胞内Ca2+异常和肌肉疾病(肢带肌营养不良和三吉肌病)有关。dysferlin的细胞质区由7个C2结构域组成,在n端C2A结构域发生突变导致病理。尽管Ca2+和C2A结构域的膜结合活性对dysferlin功能很重要,但该结构域的机制仍不清楚。在本研究中,我们发现C2A结构域通过结构域凹面上的残基Y23、K32、K33和R77介导的相互作用,优先结合含有PI(4,5)P2的膜。我们还发现,在膜结合之后,C2A结构域将Ca2+结合环上的残基插入到膜中。溶液核磁共振测量分析表明,该结构域存在两种不同的结构状态,Ca2+将结构域迁移到更刚性的结构中,对PI(4,5)P2具有更大的亲和力。基于我们的研究结果,我们提出了Ca2+将C2A从结构动态、低PI(4,5)P2亲和力状态转化为高亲和力状态的机制,通过与Tyr23、K32、K33和R77相互作用,将dysferlin靶向PI(4,5)P2富集膜。结合还涉及脂质填充的变化和C2结构域的第三个Ca2+结合环插入到膜中,这将有助于异铁素在胞外分泌和Ca2+调节中的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信