Shijin Yu , Xuannan He , Zhiwen Zhu , Tianrui Chen , Liping Xiao , Huiqiang Sui , Keyan Hu , Ying Wei , Cuiyun Li , Hua Zhu , Zhuohao Xiao
{"title":"Dendritic Fe2O3 single crystal for high performance lithium-ion batteries by turning the concentration of the iron source","authors":"Shijin Yu , Xuannan He , Zhiwen Zhu , Tianrui Chen , Liping Xiao , Huiqiang Sui , Keyan Hu , Ying Wei , Cuiyun Li , Hua Zhu , Zhuohao Xiao","doi":"10.1016/j.jelechem.2023.117624","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) are widely used due to their high capacity, high safety, and low cost. The anode material exhibits significant volume changes and subsequent reversible capacity decay during the lithiation/delithiation process, therefore, the performance of lithium-ion batteries is determined by the anode material. In this work, dendritic Fe<sub>2</sub>O<sub>3</sub><span><span> single crystal with different precursor concentrations was prepared by </span>hydrothermal method<span><span><span>. The composition and microstructure of the samples were analyzed and tested using X-ray diffraction, scanning electron microscopy, and </span>transmission electron microscopy techniques. The electrochemical performance was tested using cyclic voltage measurement and electrical </span>impedance spectroscopy. The leaves of dendritic Fe</span></span><sub>2</sub>O<sub>3</sub> were too small when the iron source concentration was too low to provide enough Fe<sup>3+</sup>, and excessive Fe<sup>3+</sup> led to the leaves of dendritic Fe<sub>2</sub>O<sub>3</sub> being too thick. The most suitable branch size and thickness of dendritic Fe<sub>2</sub>O<sub>3</sub> single crystals were grown for 0.007 mol/l Fe<sup>3+</sup> concentration (sample L4), and its electrode showed the best electrochemical performance. The sample L4 has a capacity of up to 734 mAh∙g<sup>−1</sup> for 200 cycles at 100 mA∙g<sup>−1</sup>, and has a specific capacity retention rate of 95.4% after high current 3000 mA∙g<sup>−1</sup><span>. This work is believed to facilitate understanding single crystal growth mechanisms and promote the development of high-performance lithium-ion batteries.</span></p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"943 ","pages":"Article 117624"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723004848","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Lithium-ion batteries (LIBs) are widely used due to their high capacity, high safety, and low cost. The anode material exhibits significant volume changes and subsequent reversible capacity decay during the lithiation/delithiation process, therefore, the performance of lithium-ion batteries is determined by the anode material. In this work, dendritic Fe2O3 single crystal with different precursor concentrations was prepared by hydrothermal method. The composition and microstructure of the samples were analyzed and tested using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. The electrochemical performance was tested using cyclic voltage measurement and electrical impedance spectroscopy. The leaves of dendritic Fe2O3 were too small when the iron source concentration was too low to provide enough Fe3+, and excessive Fe3+ led to the leaves of dendritic Fe2O3 being too thick. The most suitable branch size and thickness of dendritic Fe2O3 single crystals were grown for 0.007 mol/l Fe3+ concentration (sample L4), and its electrode showed the best electrochemical performance. The sample L4 has a capacity of up to 734 mAh∙g−1 for 200 cycles at 100 mA∙g−1, and has a specific capacity retention rate of 95.4% after high current 3000 mA∙g−1. This work is believed to facilitate understanding single crystal growth mechanisms and promote the development of high-performance lithium-ion batteries.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.