Bruce R. Bacon , Rosemary O'Neill , Chanho H. Park
{"title":"Iron-induced peroxidative injury to isolated rat hepatic mitochondria","authors":"Bruce R. Bacon , Rosemary O'Neill , Chanho H. Park","doi":"10.1016/S0748-5514(86)80034-4","DOIUrl":null,"url":null,"abstract":"<div><p>Peroxidative injury to the mitochondrial inner membrane with resultant defects in oxidative metabolism may be partially responsible for hepatocellular injury in iron overload. We examined the effects of iron-induced lipid peroxidation in vitro on hepatic mitochondrial morphology and function and determined if various inhibitors of free-radical-mediated injury could be protective. Normal rat liver mitochondria were prepared by differential centrifugation and were incubated with 1, 2, and 3 <em>μ</em>M Fe<sup>2+</sup>, NADPH, and with and without oxygen radical scavengers, iron chelators, and antioxidants. There was a direct linear relationship between the concentration of added iron and the degree of lipid peroxidation as measured by malondialdehyde (MDA) production (<em>r</em> =.85). With 3 <em>μ</em>M Fe<sup>2+</sup> there was a decrease in the respiratory control ratio (RCR) for all four substrates tested; this decrease in RCR was due to a decrease in the state 3 respiratory rate for all substrates, with no changes in the state 4 respiratory rate for glutamate, β-hydroxybutyrate, or succinate. Oxygen radical scavengers failed to prevent iron-induced lipid peroxidation or to protect against associated mitochondrial dysfunction. Iron chelators and antioxidants prevented MDA formation and mitochondrial function was maintained. Iron-induced lipid peroxidation in vitro produces an irreversible inhibitory defect in mitochondrial electron transport that may be specific at complex IV (cytochrome oxidase).</p></div>","PeriodicalId":77737,"journal":{"name":"Journal of free radicals in biology & medicine","volume":"2 5","pages":"Pages 339-347"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0748-5514(86)80034-4","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of free radicals in biology & medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0748551486800344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
Peroxidative injury to the mitochondrial inner membrane with resultant defects in oxidative metabolism may be partially responsible for hepatocellular injury in iron overload. We examined the effects of iron-induced lipid peroxidation in vitro on hepatic mitochondrial morphology and function and determined if various inhibitors of free-radical-mediated injury could be protective. Normal rat liver mitochondria were prepared by differential centrifugation and were incubated with 1, 2, and 3 μM Fe2+, NADPH, and with and without oxygen radical scavengers, iron chelators, and antioxidants. There was a direct linear relationship between the concentration of added iron and the degree of lipid peroxidation as measured by malondialdehyde (MDA) production (r =.85). With 3 μM Fe2+ there was a decrease in the respiratory control ratio (RCR) for all four substrates tested; this decrease in RCR was due to a decrease in the state 3 respiratory rate for all substrates, with no changes in the state 4 respiratory rate for glutamate, β-hydroxybutyrate, or succinate. Oxygen radical scavengers failed to prevent iron-induced lipid peroxidation or to protect against associated mitochondrial dysfunction. Iron chelators and antioxidants prevented MDA formation and mitochondrial function was maintained. Iron-induced lipid peroxidation in vitro produces an irreversible inhibitory defect in mitochondrial electron transport that may be specific at complex IV (cytochrome oxidase).