J M Alcolea, L C Antón, G Marqués, P Sánchez-Corral, F Vivanco
{"title":"Formation of covalent complexes between the fourth component of human complement and IgG immune aggregates.","authors":"J M Alcolea, L C Antón, G Marqués, P Sánchez-Corral, F Vivanco","doi":"10.1159/000463004","DOIUrl":null,"url":null,"abstract":"<p><p>The binding properties of activated C4 to immune complexes (ovalbumin-rabbit IgG antiovalbumin) were studied by using 125I-IgG in the immune complexes or performing the C4 binding assays in the presence of 14C-iodoacetamide. High molecular weight complexes formed between C4 and IgG could be detected by the incorporation of 14C-iodoacetamide in the -SH group generated in the nascent C4b during the activation process. The same complexes with an apparent molecular weight of 180,000 daltons were detected when the immune aggregates contained 125I-IgG. Two-dimensional SDS-PAGE analysis of the C4b-IgG covalent complexes indicated: In the absence of control proteins, the complexes are formed by the alpha'-chain of C4b and the H chain of the antibody. The alpha'-H complexes are 36% sensitive to hydroxylamine and 64% resistant. This is consistent with the presence of two populations of C4, which are not equivalent in their covalent binding with immune complexes. Covalent complexes C4-C4b or C4b(like)-C4b(like) are generated during the C4 activation and they are detected as alpha-alpha' or alpha-alpha complexes, respectively. Interaction of C4b with the L chain of the antibody molecule also seems to occur, but to a lesser extent than with the H chain.</p>","PeriodicalId":77697,"journal":{"name":"Complement (Basel, Switzerland)","volume":"4 1","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000463004","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complement (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000463004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The binding properties of activated C4 to immune complexes (ovalbumin-rabbit IgG antiovalbumin) were studied by using 125I-IgG in the immune complexes or performing the C4 binding assays in the presence of 14C-iodoacetamide. High molecular weight complexes formed between C4 and IgG could be detected by the incorporation of 14C-iodoacetamide in the -SH group generated in the nascent C4b during the activation process. The same complexes with an apparent molecular weight of 180,000 daltons were detected when the immune aggregates contained 125I-IgG. Two-dimensional SDS-PAGE analysis of the C4b-IgG covalent complexes indicated: In the absence of control proteins, the complexes are formed by the alpha'-chain of C4b and the H chain of the antibody. The alpha'-H complexes are 36% sensitive to hydroxylamine and 64% resistant. This is consistent with the presence of two populations of C4, which are not equivalent in their covalent binding with immune complexes. Covalent complexes C4-C4b or C4b(like)-C4b(like) are generated during the C4 activation and they are detected as alpha-alpha' or alpha-alpha complexes, respectively. Interaction of C4b with the L chain of the antibody molecule also seems to occur, but to a lesser extent than with the H chain.